1887

Abstract

SUMMARY: The relationship between genes and enzymes in the methionine biosynthetic pathway has been studied in The first step is catalysed by an -succinylhomoserine synthase, the product of the gene mapped at 20 min on the chromosome. The second step is achieved by direct sulfhydrylation, involving the enzyme encoded by a gene that we have identified and sequenced, located at 40 min. Thus appears to be the only organism so far described that uses -succinylhomoserine as substrate for a direct sulfhydrylation. As in yeast, the two transsulfuration pathways between cysteine and homocysteine, with cystathionine as an intermediate, probably exist in parallel in this organism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-2-431
1995-02-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/2/mic-141-2-431.html?itemId=/content/journal/micro/10.1099/13500872-141-2-431&mimeType=html&fmt=ahah

References

  1. Akrim M., Bally M., Ball G., Tommassen J., Teerink H., Filloux A., Lazdunski A. 1993; Xcp mediated protein secretion in Pseudomonas aeruginosa: identification of two additional genes and evidence for regulation of xcp gene expression.. Mol Microbiol 10: 431–443
    [Google Scholar]
  2. Bally M., Filloux A., Akrim M., Ball G., Lazdunski A., Tommassen J. 1992; Protein secretion in Pseudomonas aeruginosa: characterization of seven xcp genes and processing of secretory apparatus components by prepilin peptidase.. Mol Microbiol 6: 1121–1131
    [Google Scholar]
  3. Belfaiza J., Parsot C., Martel A., Bouthier de la Tour G., Margarita D., Cohen G. N., Saint Girons I. 1986; Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and share a common regulatory region.. Proc Natl Acad Set USA 83: 867–871
    [Google Scholar]
  4. Calhoun D. H., Feary T. W. 1969; Transductional analysis of Pseudomonas aeruginosa methionineless auxotrophs.. J Bacteriol 97: 210–216
    [Google Scholar]
  5. Cami B., Clepet C., Patte J. C. 1993; Evolutionary comparisons of three enzymes of the threonine biosynthetic pathway among several microbial species.. Biochimie 75: 487–495
    [Google Scholar]
  6. Cherest H., Surdin-Kerjan Y. 1992; Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae: updating of the sulfur metabolism pathway.. Genetics 130: 51–58
    [Google Scholar]
  7. Cherest H., Thomas D., Surdin-Kerjan Y. 1993; Cysteine biosynthesis in Saccharomyces cerevisiae occurs through the trans- sulfuration pathway which has been built up by enzyme recruitment.. J Bacteriol 175: 5366–5374
    [Google Scholar]
  8. Chu J., Shoeman R., Hart J., Coleman T., Mazaitis A., Kelher N., Brot N., Weissbach H. 1985; Cloning and expression of the metE gene in Escherichia coli. . Arch Biochem Biophys 239: 467–474
    [Google Scholar]
  9. Clepet C., Borne F., Krishnapillai V., Baird C., Patte J. C., Cami B. 1992; Isolation, organization and expression of the Pseudomonas aeruginosa threonine genes.. Mol Microbiol 6: 3109–3119
    [Google Scholar]
  10. Duchange N., Zakin M. M., Ferrara P., Saint Girons I., Park I., Tran S. V., Py M. C., Cohen G. N. 1983; Structure of the metJBLF cluster in E. coli K12. Sequence of the metB structural gene and of the 5' and 3' flanking regions of the metBL operon.. J Biol Chem 258: 14868–14871
    [Google Scholar]
  11. Figurski D. H., Helinski D. R. 1979; Replication of an origin containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. . Proc Natl Acad Sci USA 76:1648–1652
    [Google Scholar]
  12. Filloux A., Bally M., Murgier M., Wretlind B., Lazdunski A. 1989; Cloning of xcp genes located at the 55 min region of the chromosome and involved in protein secretion in Pseudomonas aeruginosa. . Mol Microbiol 3: 261–265
    [Google Scholar]
  13. Flavin M., Slaughter C. 1967; Enzymatic synthesis of homocysteine or methionine directly from O-succinylhomoserine.. Biochim Biophys Acta 132: 400–405
    [Google Scholar]
  14. Fürste J. P., Pansegrau W., Franck R., Blocker H., Scholz P., Bagdasarian M., Lanka E. 1986; Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector.. Gene 48: 119–131
    [Google Scholar]
  15. Greene R. C., Williams R. D., Kung H. F., Spears C., Weissbach H. 1973; Effect of methionine and vitamin B12 on the activities of methionine biosynthetic enzymes in metJ mutants of Escherichia coli K12.. Arch Biochem Biophys 158: 249–256
    [Google Scholar]
  16. Gunther E., Petruschka L., Herrman H. 1979; Reverse transsulfuration pathway in Pseudomonas aeruginosa. . Z Allg Mikrobiol 19: 439–442
    [Google Scholar]
  17. Holloway B. W., Zhang C. 1990; Pseudomonas aeruginosa PAO.. In Genetic Maps pp 271–278 Edited by O’Brien S. J. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  18. Kerjan P., Cherest H., Surdin-Kerjan Y. 1986; Nucleotide sequence of the Saccharomyces cerevisiae MET25 gene.. Nucleic Acids Res 14: 7861–7871
    [Google Scholar]
  19. Kredich N. H., Tomkins G. M. 1966; The enzyme synthesis OF L- cysteine in Escherichia coli and Salmonella typhimurium. . J Biol Chem 241: 4955–4965
    [Google Scholar]
  20. Langin T., Faugeron G., Goyon G., Nicolas A., Rossignol J. L. 1986; The MET2 gene of Saccharomyces cerevisiae: molecular cloning and nucleotide sequence.. Gene 49: 283–293
    [Google Scholar]
  21. Macnitol P. K., Datko A. H., Giovanelli J., Madd S. H. 1981; Homocysteine biosynthesis in green plants: physiological importance of the transsulfuration pathway in Lemma paucicostata. . Plant Physiol 68: 619–625
    [Google Scholar]
  22. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  23. Mäntsälä P., Zalkin H. 1984; Glutamine nucleotide sequence of Saccharomyces cerevisiae ADE4 encoding phosphoribosylpyro- phosphate amidotransferase.. J Biol Chem 259: 8478–8484
    [Google Scholar]
  24. Martin G., Cami B., Borne F., Jeeves D. J., Haas D., Patte J. C. 1986; Heterologous expression and regulation of the lysA genes of Pseudomonas aeruginosa and Escherichia coli. . Mol & Gen Genet 203: 430–434
    [Google Scholar]
  25. Michaeli S., Ron E. Z. 1981; Construction and physical mapping of plasmids containing the met A gene of Escherichia coli K12.. Mol & Gen Genet 182: 349–354
    [Google Scholar]
  26. O’Hoy K., Krishnapillai V. 1987; Recalibration of the Pseudomonas aeruginosa strain PAO chromosome map in time units using high frequency of recombination donors.. Genetics 115: 611–618
    [Google Scholar]
  27. Ozaki H., Shiio I. 1982; Methionine biosynthesis in Brevi- bacterium flavum: properties and essential role of O-acetyl- homoserine sulfhydrylase.. J Biochem 91: 1163–1171
    [Google Scholar]
  28. Parsot C., Saint Girons I., Cohen G. N. 1987; Enzyme specialization during the evolution of amino acid biosynthetic pathway.. Microbiol Set 4: 258–262
    [Google Scholar]
  29. Pigg C. J., Spence K. D., Parks L. W. 1962; Methionine biosynthesis in yeast.. Arch Biochem Biophys 97: 491–496
    [Google Scholar]
  30. Richaud G., Mengin-Lecreulx D., Pochet S., Johnson E. J., Cohen G. N., Marlière P. 1993; Directed evolution of biosynthetic pathways: recruitment of latent cysteine thioethers for constructing the cell wall of Escherichia coli. . J Biol Chem 268: 26827–26835
    [Google Scholar]
  31. Schelenz H. J., Gunther E., Herrmann H., Schatte L. 1986; Transductional analysis of the cysII region of Pseudomonas aeruginosa. . J Basic Microbiol 26: 55–63
    [Google Scholar]
  32. Sharpe G. S. 1984; Broad host range cloning vectors for Gramnegative bacteria.. Gene 29: 93–102
    [Google Scholar]
  33. Simon M., Hong J. S. 1983; Direct homocysteine biosynthesis from O-succinylhomoserine in Escherichia coli: an alternate pathway that bypasses cystathionine.. J Bacteriol 153: 558–561
    [Google Scholar]
  34. Tso J. Y., Zalkin H., Van Cleemput M., Yanofsky C., Smith J. M. 1982; Nucleotide sequence of Escherichia coli purF and deduced amino acid sequence of glutamine phosphoribosyl- pyrophosphate amidotransferase.. J Biol Chem 257: 3525–3531
    [Google Scholar]
  35. West S. E. H., Iglewski B. H. 1988; Codon usage in Pseudomonas aeruginosa. . Nucleic Acids Res 16: 9323–9335
    [Google Scholar]
  36. Wiebers J. L., Garner M. R. 1967; Acyl derivatives of homoserine as substrates for homocysteine synthesis in Neurospora crassa, yeast and Escherichia coli. . J Biol Chem 242: 5644–5649
    [Google Scholar]
  37. Yamagata S. 1989; Roles of O-acetyl-L-homoserine sulf- hydrylases in microorganisms.. Biochimie 71: 1125–1143
    [Google Scholar]
  38. Yanisch-Perron C., Viera J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the Ml3mpl8 and pUCl9 vectors.. Gene 33: 103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-2-431
Loading
/content/journal/micro/10.1099/13500872-141-2-431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error