1887

Abstract

Summary: Molar growth yields have been determined for two laboratory strains of and under different anaerobic growth conditions. Yeast dry weight and analyses of end products were used for calculation of . The reported data correspond to the theoretical values calculated from material-balance equations. In complex media, values averaging 11·2 and ranging from 9·2 to 14·0 were obtained shortly before glucose depletion. Lower values were observed in minimal media. were highly dependent on growth time, and seemed to decrease linearly. The data presented indicate that a change in from the accepted 10·5 to 15 to 18 may occur because of variation in time between inoculation and sampling. Previously reported values are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-69-1-135
1971-11-01
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/69/1/mic-69-1-135.html?itemId=/content/journal/micro/10.1099/00221287-69-1-135&mimeType=html&fmt=ahah

References

  1. Bauchop T., Elsden S. R. 1960; The growth of micro-organisms in relation to their energy supply. Journal of General Microbiology 23:457–469
    [Google Scholar]
  2. Beck R. W., Shugart L. R. 1966; Molar growth yields in Streptococcus faecalis var. liquefaciens . Journal of Bacteriology 92:802–803
    [Google Scholar]
  3. Belaich J. P., Senez J. C. 1965; Influence of aeration and of panthothenate on growth yields of Zymomonas mobilis . Journal of Bacteriology 89:1195–1200
    [Google Scholar]
  4. Brown J. P. 1968; Anomalous anaerobic growth yields of Lactobacillus casei strain 103 in complex medium. Applied Microbiology 16:805–807
    [Google Scholar]
  5. Buchanan B. B., Pine L. 1967; Path of glucose breakdown and cell yields of a facultative anaerobe, Actinomyces naeslundii . Journal of General Microbiology 46:225–236
    [Google Scholar]
  6. Chen S. L. 1964; Energy requirement for microbial growth. Nature; London: 2021135–1136
    [Google Scholar]
  7. Delisle A. L., Phaff H. J. 1961; The release of nitrogenous substances by brewers’ yeast. American Society of Brewing Chemists Proceedings pp. 107–118
    [Google Scholar]
  8. De Vries W., Kapteijn W. M. C., Van der Beek E. G., Stouthamer A. H. 1970; Molar growth yields and fermentation balances of Lactobacillus casei L3 in batch cultures and in continuous cultures. Journal of General Microbiology 63:333–345
    [Google Scholar]
  9. Erdal K. 1964; Tyndlagschromatografisk kulhydratbestemmelse. Brygmesteren 12:281–286
    [Google Scholar]
  10. Forrest W. W. 1967; Energies of activation and uncoupled growth in Streptococcus faecalis and Zymomonas mobilis . Journal of Bacteriology 94:1459–1463
    [Google Scholar]
  11. Forrest W. W., Walker D. J. 1965; Synthesis of reserve materials for endogenous metabolism in Streptococcus faecalis . Journal of Bacteriology 89:1448–1452
    [Google Scholar]
  12. Hadjipetrou L. P., Gerrits J. P., Teulings F. A. G., Stouthamer A. H. 1964; Relation between energy production and growth of Aerobacter aerogenes . Journal of General Microbiology 36:139–150
    [Google Scholar]
  13. Hadjipetrou L. P., Stouthamer A. H. 1963; Autolysis of Bacillus subtilis by glucose depletion. Antonie van Leeuwenhoek Journal of Microbiology and Serology 29:256–260
    [Google Scholar]
  14. Haukeli A. D., Lie S. 1971; Experimental conditions affecting yeast growth. Journal of the Institute of Brewing 77:253–258
    [Google Scholar]
  15. Hempfling W. P., Mainzer S. E., Van Demark P. J. 1969; Invariance of Y (adenosine triphosphate) of Streptococcus faecalis 10Cl during anaerobic continuous culture. Bacteriological Proceedings 69:143–144
    [Google Scholar]
  16. Hernandez E., Johnson M. J. 1967; Anaerobic growth yields of Aerobacter cloacae and Escherichia coli . Journal of Bacteriology 94:991–995
    [Google Scholar]
  17. Hobson P. N. 1965; Continuous culture of some anaerobic and facultatively anaerobic rumen bacteria. Journal of General Microbiology 38:167–180
    [Google Scholar]
  18. Hobson P. N., Summers R. 1967; The continuous culture of anaerobic bacteria. Journal of General Microbiology 47:53–65
    [Google Scholar]
  19. Hoppe W. 1956; Zur Kenntnis des Stickstoff-stoffwechsels der Hefe. EinBeitrag zur Stickstoffdissimilation. Brauwissenschaft 9:34–41
    [Google Scholar]
  20. Hungate R. E. 1963; Polysaccharide storage and growth efficiency in Ruminococcus albus . Journal of Bacteriology 86:848–854
    [Google Scholar]
  21. Joslyn M. A. 1955; Yeast autolysis. I. Chemical and cytological changes involved in autolysis. Wallerstein Laboratories Communications 18 61:107–122
    [Google Scholar]
  22. Kormančíkova V., Kovac L., Vidrova M. 1969; Oxidative phosphorylation in yeast. V. Phosphorylation efficiencies in growing cells determined from molar growth yields. Biochimica et biophysica acta 180:9–17
    [Google Scholar]
  23. Lewis M. J., Phaff H. J. 1964; Release of nitrogenous substances by brewer’s yeast. III. Shock excretion of amino acids. Journal of Bacteriology 87:1389–1396
    [Google Scholar]
  24. Lie S. 1965 Energy efficiency of yeast growth in fermentations European Brewery Convention, Proceeding of the 10th Congress, Stockholm 1965 pp. 292–304 Amsterdam: Elsevier;
    [Google Scholar]
  25. Lie S., Haukeli A. D., Gether J. J. 1970; Gas chromatographic determination of ethanol. Bryg-mesteren 11:281–291
    [Google Scholar]
  26. Maxon W. D., Johnson M. J. 1953; Aeration studies on propagation of baker’s yeast. Industrial and Engineering Chemistry 45:2554–2560
    [Google Scholar]
  27. Moustafa H. H., Collins E. B. 1968; Molar growth yields of certain lactic acid bacteria as influenced by autolysis. Journal of Bacteriology 96:117–125
    [Google Scholar]
  28. Moustafa H. H., Collins E. B. 1969; Molar growth yield of Streptococcus faecalis on pyruvate. Journal of Bacteriology 97:1496–1497
    [Google Scholar]
  29. Oxenburgh M. S., Snoswell A. M. 1965; Use of molar growth yields for the evaluation of energy-producing pathways in Lactobacillus plantarum . Journal of Bacteriology 89:913–914
    [Google Scholar]
  30. Pitt J. I., Miller M. W. 1968; Sporulation in Candida pulcherrima, Candida reukaufii and Chlamy-dozymci species: their relationships with Metschnikowia . Mycologia 60:663–685
    [Google Scholar]
  31. Senez J. C. 1962; Some considerations on the energetics of bacterial growth. Bacteriological Reviews 26:95–107
    [Google Scholar]
  32. Somogyi M. 1937; A reagent for copper-iodometric determination of very small amounts of sugar. Journal of Biological Chemistry 117:771
    [Google Scholar]
  33. Sperber E. 1946; Studies in the metabolism of growing Torulopsis utilis under anaerobic conditions. Arkiv for Kemi, Mineralogi och Geologi 21 A:I
    [Google Scholar]
  34. Stouthamer A. H. 1962; Energy production in Gluconobacter liquefaciens . Biochimica et biophysica acta 56:19–32
    [Google Scholar]
  35. Twarog R., Wolfe R. S. 1963; Role of butyryl phosphate in the energy metabolism of Clostridium tetanomorphum . Journal of Bacteriology 86:112–117
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-69-1-135
Loading
/content/journal/micro/10.1099/00221287-69-1-135
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error