1887

Abstract

Summary: strains capable of dissimilatory nitrous oxide reduction (Nos) carry a gene cluster on a 10.1 kb RI fragment of the megaplasmid near the genes. These genes are arranged in three complementation groups and the 10.1 kb RI fragment is sufficient to confer Nos activity to strains lacking such activity. An overlapping dIII fragment containing the genes but missing a 0.6 kb RI downstream segment was found incapable of imparting Nos activity to strains unable to reduce nitrous oxide, suggesting the presence of other gene(s) in this region. Tn5 introduced near the dIII site resulted in mutants with a Nos phenotype. Complete sequence analysis of showed that it was well-conserved with respect to that of . Two previously unreported genes downstream of in were also revealed. Contiguous with was a sequence showing 63% identity with the ORFL protein of . It appeared to be in the same operon as and was predicted to encode a membrane lipoprotein similar to the putative NosL of . Unlike the latter protein, however, amino acid sequences typical of metal-binding sites and cysteine residues indicative of the active site of protein disulphide isomerase were absent in the predicted NosL of . The Tn5 mutations resulting in a Nos phenotype were localized within a 966 nucleotide gene 31 nucleotides downstream of with the same orientation. The new gene, , was determined to be in a separate complementation group. It encoded a periplasmic protein with homology in the C-terminal domain with RnfF of and with a hypothetical Escherichia coli protein, YOJK. It was concluded that there are seven genes constituting the cluster in . They are organized in four complementation groups and in the same orientation, spanning a distance of about 9 kb on the megaplasmid.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-8-2817
1997-08-01
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/8/mic-143-8-2817.html?itemId=/content/journal/micro/10.1099/00221287-143-8-2817&mimeType=html&fmt=ahah

References

  1. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli. . J Mol Biol 41:459–472
    [Google Scholar]
  2. Chan Y.-K., Wheatcroft R. 1993; Detection of a nitrous oxide reductase structural gene in Rhizobium meliloti strains and its location on the nod megaplasmid of JJ1c10 and SU47. J Bacteriol 175:19–26
    [Google Scholar]
  3. Chan Y.-K., Barran L., Bromfield E. S. P. 1989; Denitrification activity of phage types representative of two populations of indigenous Rhizobium meliloti. . Can J Microbiol 35:737–740
    [Google Scholar]
  4. Chan Y.-K., Barraquio W. L., Knowles R. 1994; N2-fixing pseudomonads and related soil bacteria. FEMS Microbiol Rev 13:95–118
    [Google Scholar]
  5. Cuypers H., Zumft W. G. 1992; Regulatory components of the denitrification gene cluster of Pseudomonas stutzeri. . In Pseudomonas: Molecular Biology and Biotechnology pp. 188–197 . Edited by Galli E., Silver S., Witholt B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. De Lajudie P., Willems A., Pot B., Dewettinck D., Maestrojuan G., Neyra M., Collins M. D., Dreyfus B., Kersters K., and Gillis M. 1994; Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb, nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 44:715–733
    [Google Scholar]
  7. Ditta G., Stanfield S., Corbin D., Helinski D. R. 1980; Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. . Proc Natl Acad Sci USA 77:7347–7351
    [Google Scholar]
  8. Dreusch A., Riester J., Kroneck P. M. H., Zumft W. G. 1996; Mutation of the conserved Cys165 outside of the CuA domain destabilizes nitrous oxide reductase but maintains its catalytic activity: evidence for disulfide bridges and a putative protein disulfide isomerase gene. Eur J Biochem 237:447–453
    [Google Scholar]
  9. Eisenberg D., Schwarz E., Komaromy M., Wall R. 1984; Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179:125–142
    [Google Scholar]
  10. Fallik E., Chan Y.-K., Robson R. L. 1991; Detection of alternative nitrogenases in aerobic gram-negative nitrogen-fixing bacteria. J Bacteriol 173:365–371
    [Google Scholar]
  11. Figurski D. H., Helinski D. R. 1979; Replication of an origin- containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652
    [Google Scholar]
  12. Finan T. M., Kunkel B., Vos G. F. D., Signer E. R. 1986; Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72
    [Google Scholar]
  13. Fischer H.-M. 1994; Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386
    [Google Scholar]
  14. Friedrich B., Bӧcker C., Eberz G. & 8 other authors 1990; Genes for hydrogen oxidation and denitrification form two clusters on megaplasmid pHG1 of Alcaligenes eutrophus. . In Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnology pp. 408–419 . Edited by Silver S., Chakrabarty A. M., Iglewski B., Kaplan S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Glockner A. B., Zumft W. G. 1996; Sequence analysis of an internal 9.72 kb segment from the 30 kb denitrification gene cluster of Pseudomonas stutzeri. . Biochim Biophys Acta 1277:6–12
    [Google Scholar]
  16. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  17. Hayashi S., Wu H. C. 1990; Lipoproteins in bacteria. J Bioenerg Biomembr 22:451–471
    [Google Scholar]
  18. von Heijne G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683–4690
    [Google Scholar]
  19. Hennecke H., Anthamatten D., Babst M. & 8 other authors 1993; Genetic and physiologic requirements for optimal bacteroid function in the Bradyrhizobium japonicum soybean symbiosis. . In Advances in Molecular Genetics of Plant–Microbe Interactions vol. 2 , pp. 199–207 . Edited by Nester E. W., Verma D. P. S. Dordrecht: Kluwer;
    [Google Scholar]
  20. Holloway P., McCormick W., Watson R. J., Chan Y.-K. 1996; Identification and analysis of the dissimilatory nitrous oxide reduction genes, nosRZDFY, of Rhizobium meliloti. . J Bacteriol 178:1505–1514
    [Google Scholar]
  21. Klein P., Kanehisa M., DeLisi C. 1985; The detection and classification of membrane-spanning proteins. Biochim Biophys Acta 815:468–76
    [Google Scholar]
  22. Knauf V. C., Nester E. W. 1982; Wide host range cloning vectors: a cosmid clone bank of Agrobacterium Ti plasmid. Plasmid 8:45–54
    [Google Scholar]
  23. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132
    [Google Scholar]
  24. Rao J. K. M., Argos P. 1986; A conformational preference parameter to predict helices in integral membrane proteins. Biochem Biophys Acta 869:197–214
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Set USA 74:5463–5467
    [Google Scholar]
  27. Schmehl M., Jahn A., zu Vilsendorf A. M., Hennecke S., Masepohl B., Schuppler M., Marxer M., Oelze J., Klipp W. 1993; Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase. Mol Gen Genet 241:602–615
    [Google Scholar]
  28. Selvaraj G., Hooper I., Shantharam S., Iyer V. N., Barran L., Wheatcroft R., Watson R. J. 1987; Derivation and molecular characterization of symbiotically deficient mutants of Rhizobium meliloti . Can J Microbiol 33:739–747
    [Google Scholar]
  29. Toffanin A., Wu Q., Maskus M., Casella S., Abruna H. D., Shapleigh J. P. 1996; Characterization of the gene encoding nitrite reductase and the physiological consequences of its expression in the nondenitrifying Rhizobiumhedysari’ strain HCNT1. Appl Environ Microbiol 62:4019–4025
    [Google Scholar]
  30. Wu Q., Knowles R., Chan Y.-K. 1995; Production and consumption of nitric oxide by denitrifying Flexibacter canadensis . Can J Microbiol 41:585–591
    [Google Scholar]
  31. Zumft W. G. 1992; The denitrifying prokaryotes. . In The Prokaryotes 2nd edn, pp 554–582 . Edited by Balows A., Trüper H. G., Dworkin M., Harder W., & Schleifer K.-H. New York: Springer;
    [Google Scholar]
  32. Zumft W. G., Kroneck P. M. H. 1990; Metabolism of nitrous oxide. . In Denitrification in Soil and Sediment pp. 37–55 . Edited by Revsbech N. P., Sørensen J. New York: Plenum Press;
    [Google Scholar]
  33. Zumft W. G., Viebrock-Sambale A., Braun C. 1990; Nitrous oxide reductase from denitrifying Pseudomonas stutzeri: genes for copper-processing and properties of the deduced products, including a new member of the family of ATP/GTP-binding proteins. Eur J Biochem 192:591–599
    [Google Scholar]
  34. Zumft W. G., Dreusch A., Lӧchelt S., Cuypers H., Friedrich B., Schneider B. 1992; Derived amino acid sequences of the nosZ gene (respiratory N2O reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues: implications for the CuA site of N2O reductase and cytochrome-c oxidase. Eur J Biochem 208:31–40
    [Google Scholar]
/content/journal/micro/10.1099/00221287-143-8-2817
Loading
/content/journal/micro/10.1099/00221287-143-8-2817
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error