- Volume 4, Issue 2, 2018
Volume 4, Issue 2, 2018
- Methods Paper
-
- Genomic Methodologies
- Genome Variation Detection
-
-
MentaLiST – A fast MLST caller for large MLST schemes
MLST (multi-locus sequence typing) is a classic technique for genotyping bacteria, widely applied for pathogen outbreak surveillance. Traditionally, MLST is based on identifying sequence types from a small number of housekeeping genes. With the increasing availability of whole-genome sequencing data, MLST methods have evolved towards larger typing schemes, based on a few hundred genes [core genome MLST (cgMLST)] to a few thousand genes [whole genome MLST (wgMLST)]. Such large-scale MLST schemes have been shown to provide a finer resolution and are increasingly used in various contexts such as hospital outbreaks or foodborne pathogen outbreaks. This methodological shift raises new computational challenges, especially given the large size of the schemes involved. Very few available MLST callers are currently capable of dealing with large MLST schemes. We introduce MentaLiST, a new MLST caller, based on a k-mer voting algorithm and written in the Julia language, specifically designed and implemented to handle large typing schemes. We test it on real and simulated data to show that MentaLiST is faster than any other available MLST caller while providing the same or better accuracy, and is capable of dealing with MLST schemes with up to thousands of genes while requiring limited computational resources. MentaLiST source code and easy installation instructions using a Conda package are available at https://github.com/WGS-TB/MentaLiST.
-
- Research Article
-
- Genomic Methodologies
- Genome-Phenotype Association
-
-
Coupling next-generation sequencing to dominant positive screens for finding antibiotic cellular targets and resistance mechanisms in Escherichia coli
More LessIn order to expedite the discovery of genes coding for either drug targets or antibiotic resistance, we have developed a functional genomic strategy termed Plas-Seq. This technique involves coupling a multicopy suppressor library to next-generation sequencing. We generated an Escherichia coli plasmid genomic library that was transformed into E. coli. These transformants were selected step by step using 0.25× to 2× minimum inhibitory concentrations for ceftriaxone, gentamicin, levofloxacin, tetracycline or trimethoprim. Plasmids were isolated at each selection step and subjected to Illumina sequencing. By searching for genomic loci whose sequencing coverage increased with antibiotic pressure we were able to detect 48 different genomic loci that were enriched by at least one antibiotic. Fifteen of these loci were studied functionally, and we showed that 13 can decrease the susceptibility of E. coli to antibiotics when overexpressed. These genes coded for drug targets, transcription factors, membrane proteins and resistance factors. The technique of Plas-Seq is expediting the discovery of genes associated with the mode of action or resistance to antibiotics and led to the isolation of a novel gene influencing drug susceptibility. It has the potential for being applied to novel molecules and to other microbial species.
-
- Genome Variation Detection
-
-
Plasmodium parasites of birds have the most AT-rich genes of eukaryotes
More LessThe genomic architecture of organisms, including nucleotide composition, can be highly variable, even among closely-related species. To better understand the causes leading to structural variation in genomes, information on distinct and diverse genomic features is needed. Malaria parasites are known for encompassing a wide range of genomic GC-content and it has long been thought that Plasmodium falciparum, the virulent malaria parasite of humans, has the most AT-biased eukaryotic genome. Here, I perform comparative genomic analyses of the most AT-rich eukaryotes sequenced to date, and show that the avian malaria parasites Plasmodium gallinaceum, P. ashfordi, and P. relictum have the most extreme coding sequences in terms of AT-bias. Their mean GC-content is 21.21, 21.22 and 21.60 %, respectively, which is considerably lower than the transcriptome of P. falciparum (23.79 %) and other eukaryotes. This information enables a better understanding of genome evolution and raises the question of how certain organisms are able to prosper despite severe compositional constraints.
-
-
-
Development and implementation of multilocus sequence typing to study the diversity of the yeast Kluyveromyces marxianus in Italian cheeses
The yeast Kluyveromyces marxianus possesses advantageous traits like rapid growth, GRAS (generally regarded as safe) status and thermotolerance that make it very suitable for diverse biotechnological applications. Although physiological studies demonstrate wide phenotypic variation within the species, there is only limited information available on the genetic diversity of K. marxianus. The aim of this work was to develop a multilocus sequence typing (MLST) method for K. marxianus to improve strain classification and selection. Analysis of housekeeping genes in a number of sequenced strains led to the selection of five genes, IPP1, TFC1, GPH1, GSY2 and SGA1, with sufficient polymorphic sites to allow MLST analysis. These loci were sequenced in an additional 76 strains and used to develop the MLST. This revealed wide diversity in the species and separation of the culture collection and wild strains into multiple distinct clades. Two subsets of strains that shared sources of origin were subjected to MLST and split decomposition analysis. The latter revealed evidence of recombination, indicating that this yeast undergoes mating in the wild. A public access web-based portal was established to allow expansion of the database and application of MLST to additional K. marxianus strains. This will aid understanding of the genetic diversity of the yeast and facilitate biotechnological exploitation.
-
- Microbial Evolution and Epidemiology
- Communicable Disease Genomics
-
-
Comprehensive assessment of the quality of Salmonella whole genome sequence data available in public sequence databases using the Salmonella in silico Typing Resource (SISTR)
Public health and food safety institutions around the world are adopting whole genome sequencing (WGS) to replace conventional methods for characterizing Salmonella for use in surveillance and outbreak response. Falling costs and increased throughput of WGS have resulted in an explosion of data, but questions remain as to the reliability and robustness of the data. Due to the critical importance of serovar information to public health, it is essential to have reliable serovar assignments available for all of the Salmonella records. The current study used a systematic assessment and curation of all Salmonella in the sequence read archive (SRA) to assess the state of the data and their utility. A total of 67 758 genomes were assembled de novo and quality-assessed for their assembly metrics as well as species and serovar assignments. A total of 42 400 genomes passed all of the quality criteria but 30.16 % of genomes were deposited without serotype information. These data were used to compare the concordance of reported and predicted serovars for two in silico prediction tools, multi-locus sequence typing (MLST) and the Salmonella in silico Typing Resource (SISTR), which produced predictions that were fully concordant with 87.51 and 91.91 % of the tested isolates, respectively. Concordance of in silico predictions increased when serovar variants were grouped together, 89.25 % for MLST and 94.98 % for SISTR. This study represents the first large-scale validation of serovar information in public genomes and provides a large validated set of genomes, which can be used to benchmark new bioinformatics tools.
-
- Population Genomics
-
-
Multi-clonal evolution of multi-drug-resistant/extensively drug-resistant Mycobacterium tuberculosis in a high-prevalence setting of Papua New Guinea for over three decades
An outbreak of multi-drug resistant (MDR) tuberculosis (TB) has been reported on Daru Island, Papua New Guinea. Mycobacterium tuberculosis strains driving this outbreak and the temporal accrual of drug resistance mutations have not been described. Whole genome sequencing of 100 of 165 clinical isolates referred from Daru General Hospital to the Supranational reference laboratory, Brisbane, during 2012–2015 revealed that 95 belonged to a single modern Beijing sub-lineage strain. Molecular dating suggested acquisition of streptomycin and isoniazid resistance in the 1960s, with potentially enhanced virulence mediated by an mycP1 mutation. The Beijing sub-lineage strain demonstrated a high degree of co-resistance between isoniazid and ethionamide (80/95; 84.2 %) attributed to an inhA promoter mutation combined with inhA and ndh coding mutations. Multi-drug resistance, observed in 78/95 samples, emerged with the acquisition of a typical rpoB mutation together with a compensatory rpoC mutation in the 1980s. There was independent acquisition of fluoroquinolone and aminoglycoside resistance, and evidence of local transmission of extensively drug resistant (XDR) strains from 2009. These findings underline the importance of whole genome sequencing in informing an effective public health response to MDR/XDR TB.
-
-
-
Genome analysis of clinical multilocus sequence Type 11 Klebsiella pneumoniae from China
More LessThe increasing prevalence of KPC-producing Klebsiella pneumoniae strains in clinical settings has been largely attributed to dissemination of organisms of specific multilocus sequence types, such as ST258 and ST11. Compared with the ST258 clone, which is prevalent in North America and Europe, ST11 is common in China but information regarding its genetic features remains scarce. In this study, we performed detailed genetic characterization of ST11 K. pneumoniae strains by analyzing whole-genome sequences of 58 clinical strains collected from diverse geographic locations in China. The ST11 genomes were found to be highly heterogeneous and clustered into at least three major lineages based on the patterns of single-nucleotide polymorphisms. Exhibiting five different capsular types, these ST11 strains were found to harbor multiple resistance and virulence determinants such as the bla KPC-2 gene, which encodes carbapenemase, and the yersiniabactin-associated virulence genes irp, ybt and fyu. Moreover, genes encoding the virulence factor aerobactin and the regulator of the mucoid phenotype (rmpA) were detectable in six genomes, whereas genes encoding salmochelin were found in three genomes. In conclusion, our data indicated that carriage of a wide range of resistance and virulence genes constitutes the underlying basis of the high level of prevalence of ST11 in clinical settings. Such findings provide insight into the development of novel strategies for prevention, diagnosis and treatment of K. pneumoniae infections.
-
- Systems Microbiology
- Transcriptomics, Proteomics, Networks
-
-
Transcriptional changes when Myxococcus xanthus preys on Escherichia coli suggest myxobacterial predators are constitutively toxic but regulate their feeding
More LessPredation is a fundamental ecological process, but within most microbial ecosystems the molecular mechanisms of predation remain poorly understood. We investigated transcriptome changes associated with the predation of Escherichia coli by the myxobacterium Myxococcus xanthus using mRNA sequencing. Exposure to pre-killed prey significantly altered expression of 1319 predator genes. However, the transcriptional response to living prey was minimal, with only 12 genes being significantly up-regulated. The genes most induced by prey presence (kdpA and kdpB, members of the kdp regulon) were confirmed by reverse transcriptase quantitative PCR to be regulated by osmotic shock in M. xanthus, suggesting indirect sensing of prey. However, the prey showed extensive transcriptome changes when co-cultured with predator, with 40 % of its genes (1534) showing significant changes in expression. Bacteriolytic M. xanthus culture supernatant and secreted outer membrane vesicles (OMVs) also induced changes in expression of large numbers of prey genes (598 and 461, respectively). Five metabolic pathways were significantly enriched in prey genes up-regulated on exposure to OMVs, supernatant and/or predatory cells, including those for ribosome and lipopolysaccharide production, suggesting that the prey cell wall and protein production are primary targets of the predator’s attack. Our data suggest a model of the myxobacterial predatome (genes and proteins associated with predation) in which the predator constitutively produces secretions which disable its prey whilst simultaneously generating a signal that prey is present. That signal then triggers a regulated feeding response in the predator.
-
-
-
Dynamic sporulation gene co-expression networks for Bacillus subtilis 168 and the food-borne isolate Bacillus amyloliquefaciens: a transcriptomic model
More LessSporulation is a survival strategy, adapted by bacterial cells in response to harsh environmental adversities. The adaptation potential differs between strains and the variations may arise from differences in gene regulation. Gene networks are a valuable way of studying such regulation processes and establishing associations between genes. We reconstructed and compared sporulation gene co-expression networks (GCNs) of the model laboratory strain Bacillus subtilis 168 and the food-borne industrial isolate Bacillus amyloliquefaciens. Transcriptome data obtained from samples of six stages during the sporulation process were used for network inference. Subsequently, a gene set enrichment analysis was performed to compare the reconstructed GCNs of B. subtilis 168 and B. amyloliquefaciens with respect to biological functions, which showed the enriched modules with coherent functional groups associated with sporulation. On basis of the GCNs and time-evolution of differentially expressed genes, we could identify novel candidate genes strongly associated with sporulation in B. subtilis 168 and B. amyloliquefaciens. The GCNs offer a framework for exploring transcription factors, their targets, and co-expressed genes during sporulation. Furthermore, the methodology described here can conveniently be applied to other species or biological processes.
-
- Review
-
- Systems Microbiology
- Large-Scale Comparative Genomics
-
-
Culture-independent approaches to chlamydial genomics
More LessThe expanding field of bacterial genomics has revolutionized our understanding of microbial diversity, biology and phylogeny. For most species, DNA extracted from culture material is used as the template for genome sequencing; however, the majority of microbes are actually uncultivable, and others, such as obligate intracellular bacteria, require laborious tissue culture to yield sufficient genomic material for sequencing. Chlamydiae are one such group of obligate intracellular microbes whose characterization has been hampered by this requirement. To circumvent these challenges, researchers have developed culture-independent sample preparation methods that can be applied to the sample directly or to genomic material extracted from the sample. These methods, which encompass both targeted [immunomagnetic separation-multiple displacement amplification (IMS-MDA) and sequence capture] and non-targeted approaches (host methylated DNA depletion-microbial DNA enrichment and cell-sorting-MDA), have been applied to a range of clinical and environmental samples to generate whole genomes of novel chlamydial species and strains. This review aims to provide an overview of the application, advantages and limitations of these targeted and non-targeted approaches in the chlamydial context. The methods discussed also have broad application to other obligate intracellular bacteria or clinical and environmental samples.
-
- Short Paper
-
- Systems Microbiology
- Transcriptomics, Proteomics, Networks
-
-
Comparative transcriptomics of Aspergillus fumigatus strains upon exposure to human airway epithelial cells
Aspergillus fumigatus is an opportunistic, ubiquitous, saprophytic mould that can cause severe allergic responses in atopic individuals as well as life-threatening infections in immunocompromised patients. A critical step in the establishment of infection is the invasion of airway epithelial cells by the inhaled fungi. Understanding how A. fumigatus senses and responds to airway cells is important to understand the pathogenesis of invasive pulmonary aspergillosis. Here, we analysed the transcriptomes of two commonly used clinical isolates, Af293 and CEA10, during infection of the A549 type II pneumocyte cell line in vitro. We focused our RNA-seq analysis on the core set of genes that are present in the genomes of the two strains. Our results suggest that: (a) A. fumigatus does not mount a conserved transcriptional response to airway epithelial cells in our in vitro model and (b) strain background and time spent in the tissue culture media have a greater impact on the transcriptome than the presence of host cells. Our analyses reveal both common and strain-specific transcriptional programmes that allow for the generation of hypotheses about gene function as it pertains to pathogenesis and the significant phenotypic heterogeneity that is observed among A. fumigatus isolates.
-