1887

Abstract

The increasing prevalence of KPC-producing Klebsiella pneumoniae strains in clinical settings has been largely attributed to dissemination of organisms of specific multilocus sequence types, such as ST258 and ST11. Compared with the ST258 clone, which is prevalent in North America and Europe, ST11 is common in China but information regarding its genetic features remains scarce. In this study, we performed detailed genetic characterization of ST11 K. pneumoniae strains by analyzing whole-genome sequences of 58 clinical strains collected from diverse geographic locations in China. The ST11 genomes were found to be highly heterogeneous and clustered into at least three major lineages based on the patterns of single-nucleotide polymorphisms. Exhibiting five different capsular types, these ST11 strains were found to harbor multiple resistance and virulence determinants such as the bla KPC-2 gene, which encodes carbapenemase, and the yersiniabactin-associated virulence genes irp, ybt and fyu. Moreover, genes encoding the virulence factor aerobactin and the regulator of the mucoid phenotype (rmpA) were detectable in six genomes, whereas genes encoding salmochelin were found in three genomes. In conclusion, our data indicated that carriage of a wide range of resistance and virulence genes constitutes the underlying basis of the high level of prevalence of ST11 in clinical settings. Such findings provide insight into the development of novel strategies for prevention, diagnosis and treatment of K. pneumoniae infections.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000149
2018-02-08
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/2/mgen000149.html?itemId=/content/journal/mgen/10.1099/mgen.0.000149&mimeType=html&fmt=ahah

References

  1. Clegg S, Murphy CN. Epidemiology and virulence of Klebsiella pneumoniae. Microbiol Spectr 2016;4: [CrossRef][PubMed]
    [Google Scholar]
  2. Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev 2016;80:629–661 [CrossRef][PubMed]
    [Google Scholar]
  3. Bowers JR, Kitchel B, Driebe EM, MacCannell DR, Roe C et al. Genomic analysis of the emergence and rapid global dissemination of the clonal group 258 Klebsiella pneumoniae pandemic. PLoS One 2015;10:e0133727 [CrossRef][PubMed]
    [Google Scholar]
  4. Munoz-Price LS, Quinn JP. The spread of Klebsiella pneumoniae carbapenemases: a tale of strains, plasmids, and transposons. Clin Infect Dis 2009;49:1739–1741 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen L, Mathema B, Chavda KD, Deleo FR, Bonomo RA et al. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol 2014;22:686–696 [CrossRef][PubMed]
    [Google Scholar]
  6. Deleo FR, Chen L, Porcella SF, Martens CA, Kobayashi SD et al. Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae. Proc Natl Acad Sci USA 2014;111:4988–4993 [CrossRef][PubMed]
    [Google Scholar]
  7. Cuzon G, Naas T, Truong H, Villegas MV, Wisell KT et al. Worldwide diversity of Klebsiella pneumoniae that produce β-lactamase bla KPC-2 gene. Emerg Infect Dis 2010;16:1349–1356 [CrossRef][PubMed]
    [Google Scholar]
  8. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013;13:785–796 [CrossRef][PubMed]
    [Google Scholar]
  9. Pitout JD, Nordmann P, Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother 2015;59:5873–5884 [CrossRef][PubMed]
    [Google Scholar]
  10. Qi Y, Wei Z, Ji S, Du X, Shen P et al. ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J Antimicrob Chemother 2011;66:307–312 [CrossRef][PubMed]
    [Google Scholar]
  11. Gaiarsa S, Comandatore F, Gaibani P, Corbella M, Dalla Valle C et al. Genomic epidemiology of Klebsiella pneumoniae in Italy and novel insights into the origin and global evolution of its resistance to carbapenem antibiotics. Antimicrob Agents Chemother 2015;59:389–396 [CrossRef][PubMed]
    [Google Scholar]
  12. Chen L, Mathema B, Pitout JD, Deleo FR, Kreiswirth BN. Epidemic Klebsiella pneumoniae ST258 is a hybrid strain. MBio 2014;5:e01355-14 [CrossRef][PubMed]
    [Google Scholar]
  13. Mathers AJ, Stoesser N, Sheppard AE, Pankhurst L, Giess A et al. Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae at a single institution: insights into endemicity from whole-genome sequencing. Antimicrob Agents Chemother 2015;59:1656–1663 [CrossRef][PubMed]
    [Google Scholar]
  14. Liu P, Li P, Jiang X, Bi D, Xie Y et al. Complete genome sequence of Klebsiella pneumoniae subsp. pneumoniae HS11286, a multidrug-resistant strain isolated from human sputum. J Bacteriol 2012;194:1841–1842 [CrossRef][PubMed]
    [Google Scholar]
  15. Bi D, Jiang X, Sheng ZK, Ngmenterebo D, Tai C et al. Mapping the resistance-associated mobilome of a carbapenem-resistant Klebsiella pneumoniae strain reveals insights into factors shaping these regions and facilitates generation of a 'resistance-disarmed' model organism. J Antimicrob Chemother 2015;70:2770–2774 [CrossRef][PubMed]
    [Google Scholar]
  16. Jiang Y, Wei Z, Wang Y, Hua X, Feng Y et al. Tracking a hospital outbreak of KPC-producing ST11 Klebsiella pneumoniae with whole genome sequencing. Clin Microbiol Infect 2015;21:1001–1007 [CrossRef][PubMed]
    [Google Scholar]
  17. Wyres KL, Gorrie C, Edwards DJ, Wertheim HF, Hsu LY et al. Extensive capsule locus variation and large-scale genomic recombination within the Klebsiella pneumoniae clonal group 258. Genome Biol Evol 2015;7:1267–1279 [CrossRef][PubMed]
    [Google Scholar]
  18. Teng JL, Tang Y, Huang Y, Guo FB, Wei W et al. Phylogenomic analyses and reclassification of species within the genus Tsukamurella: insights to species definition in the post-genomic era. Front Microbiol 2016;7:1137 [CrossRef][PubMed]
    [Google Scholar]
  19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  20. Antipov D, Korobeynikov A, Mclean JS, Pevzner PA. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics 2016;32:1009–1015 [CrossRef][PubMed]
    [Google Scholar]
  21. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014;42:D206–D214 [CrossRef][PubMed]
    [Google Scholar]
  22. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  23. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012;67:2640–2644 [CrossRef][PubMed]
    [Google Scholar]
  24. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014;58:3895–3903 [CrossRef][PubMed]
    [Google Scholar]
  25. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006;34:D32–D36 [CrossRef][PubMed]
    [Google Scholar]
  26. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res 2011;39:W347–W352 [CrossRef][PubMed]
    [Google Scholar]
  27. Lam MMC, Wick RR, Wyres KL, Gorrie C, Judd LM et al. Frequent emergence of pathogenic lineages of Klebsiella pneumoniae via mobilisation of yersiniabactin and colibactin. 2017
  28. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 2014;15:524 [CrossRef][PubMed]
    [Google Scholar]
  29. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016;44:W242–W245 [CrossRef][PubMed]
    [Google Scholar]
  30. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015;31:3691–3693 [CrossRef][PubMed]
    [Google Scholar]
  31. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011;12:402 [CrossRef][PubMed]
    [Google Scholar]
  32. Wyres KL, Wick RR, Gorrie C, Jenney A, Follador R et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genom 2016;2:e000102 [CrossRef][PubMed]
    [Google Scholar]
  33. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011;27:1009–1010 [CrossRef][PubMed]
    [Google Scholar]
  34. Zhang R, Liu L, Zhou H, Chan EW, Li J et al. Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China. EBioMedicine 2017;19:98–106 [CrossRef][PubMed]
    [Google Scholar]
  35. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci USA 2015;112:E3574E3581 [CrossRef][PubMed]
    [Google Scholar]
  36. Chen L, Mathema B, Chavda KD, Deleo FR, Bonomo RA et al. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol 2014;22:686–696 [CrossRef][PubMed]
    [Google Scholar]
  37. Pan YJ, Lin TL, Chen CT, Chen YY, Hsieh PF et al. Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Sci Rep 2015;5:15573 [CrossRef][PubMed]
    [Google Scholar]
  38. Pan YJ, Lin TL, Lin YT, Su PA, Chen CT et al. Identification of capsular types in carbapenem-resistant Klebsiella pneumoniae strains by wzc sequencing and implications for capsule depolymerase treatment. Antimicrob Agents Chemother 2015;59:1038–1047 [CrossRef][PubMed]
    [Google Scholar]
  39. Kubler-Kielb J, Vinogradov E, Ng WI, Maczynska B, Junka A et al. The capsular polysaccharide and lipopolysaccharide structures of two carbapenem resistant Klebsiella pneumoniae outbreak isolates. Carbohydr Res 2013;369:6–9 [CrossRef][PubMed]
    [Google Scholar]
  40. Ramos PI, Picão RC, Vespero EC, Pelisson M, Zuleta LF et al. Pyrosequencing-based analysis reveals a novel capsular gene cluster in a KPC-producing Klebsiella pneumoniae clinical isolate identified in Brazil. BMC Microbiol 2012;12:173 [CrossRef][PubMed]
    [Google Scholar]
  41. D'Andrea MM, Amisano F, Giani T, Conte V, Ciacci N et al. Diversity of capsular polysaccharide gene clusters in Kpc-producing Klebsiella pneumoniae clinical isolates of sequence type 258 involved in the Italian epidemic. PLoS One 2014;9:e96827 [CrossRef][PubMed]
    [Google Scholar]
  42. Hudson CM, Bent ZW, Meagher RJ, Williams KP. Resistance determinants and mobile genetic elements of an NDM-1-encoding Klebsiella pneumoniae strain. PLoS One 2014;9:e99209 [CrossRef][PubMed]
    [Google Scholar]
  43. Whitfield C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 2006;75:39–68 [CrossRef][PubMed]
    [Google Scholar]
  44. Andrade LN, Vitali L, Gaspar GG, Bellissimo-Rodrigues F, Martinez R et al. Expansion and evolution of a virulent, extensively drug-resistant (polymyxin B-resistant), QnrS1-, CTX-M-2-, and KPC-2-producing Klebsiella pneumoniae ST11 international high-risk clone. J Clin Microbiol 2014;52:2530–2535 [CrossRef][PubMed]
    [Google Scholar]
  45. Doi Y, Hazen TH, Boitano M, Tsai YC, Clark TA et al. Whole-genome assembly of Klebsiella pneumoniae coproducing NDM-1 and OXA-232 carbapenemases using single-molecule, real-time sequencing. Antimicrob Agents Chemother 2014;58:5947–5953 [CrossRef][PubMed]
    [Google Scholar]
  46. Zhang R, Liu L, Zhou H, Chan EW, Li J et al. Nationwide surveillance of clinical carbapenem-resistant enterobacteriaceae (CRE) strains in China. EBioMedicine 2017;19:98–106 [CrossRef]
    [Google Scholar]
  47. Pea R. Comparative analysis of the complete genome of KPC-2-producing Klebsiella pneumoniae Kp13 reveals remarkable genome plasticity and a wide repertoire of virulence and resistance mechanisms. BMC Genomics 2013;15:54
    [Google Scholar]
  48. Naparstek L, Carmeli Y, Navon-Venezia S, Banin E. Biofilm formation and susceptibility to gentamicin and colistin of extremely drug-resistant KPC-producing Klebsiella pneumoniae. J Antimicrob Chemother 2014;69:1027–1034 [CrossRef][PubMed]
    [Google Scholar]
  49. El Fertas-Aissani R, Messai Y, Alouache S, Bakour R. Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathol Biol 2013;61:209–216 [CrossRef][PubMed]
    [Google Scholar]
  50. Wang X, Chen G, Wu X, Wang L, Cai J et al. Increased prevalence of carbapenem resistant Enterobacteriaceae in hospital setting due to cross-species transmission of the bla NDM-1 element and clonal spread of progenitor resistant strains. Front Microbiol 2015;6:595 [CrossRef][PubMed]
    [Google Scholar]
  51. Struve C, Roe CC, Stegger M, Stahlhut SG, Hansen DS et al. Mapping the evolution of hypervirulent Klebsiella pneumoniae. MBio 2015;6:e00630 [CrossRef][PubMed]
    [Google Scholar]
  52. Gu D, Dong N, Zheng Z, Lin D, Huang M et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis 2018;18:37–46 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000149
Loading
/content/journal/mgen/10.1099/mgen.0.000149
Loading

Data & Media loading...

Supplementary File 2

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error