1887

Abstract

The expanding field of bacterial genomics has revolutionized our understanding of microbial diversity, biology and phylogeny. For most species, DNA extracted from culture material is used as the template for genome sequencing; however, the majority of microbes are actually uncultivable, and others, such as obligate intracellular bacteria, require laborious tissue culture to yield sufficient genomic material for sequencing. Chlamydiae are one such group of obligate intracellular microbes whose characterization has been hampered by this requirement. To circumvent these challenges, researchers have developed culture-independent sample preparation methods that can be applied to the sample directly or to genomic material extracted from the sample. These methods, which encompass both targeted [immunomagnetic separation-multiple displacement amplification (IMS-MDA) and sequence capture] and non-targeted approaches (host methylated DNA depletion-microbial DNA enrichment and cell-sorting-MDA), have been applied to a range of clinical and environmental samples to generate whole genomes of novel chlamydial species and strains. This review aims to provide an overview of the application, advantages and limitations of these targeted and non-targeted approaches in the chlamydial context. The methods discussed also have broad application to other obligate intracellular bacteria or clinical and environmental samples.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000145
2018-01-03
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/2/mgen000145.html?itemId=/content/journal/mgen/10.1099/mgen.0.000145&mimeType=html&fmt=ahah

References

  1. Woese CR. Bacterial evolution. Microbiol Rev 1987;51:221–271[PubMed]
    [Google Scholar]
  2. Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA. Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol 1986;40:337–365 [CrossRef][PubMed]
    [Google Scholar]
  3. Pace NR. A molecular view of microbial diversity and the biosphere. Science 1997;276:734–740[PubMed]
    [Google Scholar]
  4. Hugenholtz P. Exploring prokaryotic diversity in the genomic era. Genome Biol 2002;3:[PubMed]
    [Google Scholar]
  5. Rappé MS, Giovannoni SJ. The uncultured microbial majority. Annu Rev Microbiol 2003;57:369–394 [CrossRef][PubMed]
    [Google Scholar]
  6. Hugenholtz P, Goebel BM, Pace NR. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 1998;180:4765–4774[PubMed]
    [Google Scholar]
  7. Hamady M, Knight R. Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res 2009;19:1141–1152 [CrossRef][PubMed]
    [Google Scholar]
  8. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R et al. The human microbiome project. Nature 2007;449:804–810 [CrossRef][PubMed]
    [Google Scholar]
  9. Robinson G, Caldwell GS, Wade MJ, Free A, Jones CL et al. Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes. Sci Rep 2016;6:38850 [CrossRef][PubMed]
    [Google Scholar]
  10. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 2004;428:37–43 [CrossRef][PubMed]
    [Google Scholar]
  11. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 2004;304:66–74 [CrossRef][PubMed]
    [Google Scholar]
  12. Thomas T, Gilbert J, Meyer F. Metagenomics - a guide from sampling to data analysis. Microb Inform Exp 2012;2:3 [CrossRef][PubMed]
    [Google Scholar]
  13. Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet 2016;17:175–188 [CrossRef][PubMed]
    [Google Scholar]
  14. Marcy Y, Ouverney C, Bik EM, Lösekann T, Ivanova N et al. Dissecting biological "dark matter" with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci USA 2007;104:11889–11894 [CrossRef][PubMed]
    [Google Scholar]
  15. McLean JS, Lasken RS. Single cell genomics of bacterial pathogens: outlook for infectious disease research. Genome Med 2014;6:108 [CrossRef][PubMed]
    [Google Scholar]
  16. Lasken RS. Genomic sequencing of uncultured microorganisms from single cells. Nat Rev Microbiol 2012;10:631–640 [CrossRef][PubMed]
    [Google Scholar]
  17. Raghunathan A, Ferguson HR, Bornarth CJ, Song W, Driscoll M et al. Genomic DNA amplification from a single bacterium. Appl Environ Microbiol 2005;71:3342–3347 [CrossRef][PubMed]
    [Google Scholar]
  18. Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 2004;68:669–685 [CrossRef][PubMed]
    [Google Scholar]
  19. Abee T, van Schaik W, Siezen RJ. Impact of genomics on microbial food safety. Trends Biotechnol 2004;22:653–660 [CrossRef][PubMed]
    [Google Scholar]
  20. Allsop AE. New antibiotic discovery, novel screens, novel targets and impact of microbial genomics. Curr Opin Microbiol 1998;1:530–534[PubMed]
    [Google Scholar]
  21. Tang CM, Moxon ER. The impact of microbial genomics on antimicrobial drug development. Annu Rev Genomics Hum Genet 2001;2:259–269 [CrossRef][PubMed]
    [Google Scholar]
  22. McRobb E, Sarovich DS, Price EP, Kaestli M, Mayo M et al. Tracing melioidosis back to the source: using whole-genome sequencing to investigate an outbreak originating from a contaminated domestic water supply. J Clin Microbiol 2015;53:1144–1148 [CrossRef][PubMed]
    [Google Scholar]
  23. Bertelli C, Greub G. Rapid bacterial genome sequencing: methods and applications in clinical microbiology. Clin Microbiol Infect 2013;19:803–813 [CrossRef][PubMed]
    [Google Scholar]
  24. Dean FB, Nelson JR, Giesler TL, Lasken RS. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 2001;11:1095–1099 [CrossRef][PubMed]
    [Google Scholar]
  25. Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 2009;27:182–189 [CrossRef][PubMed]
    [Google Scholar]
  26. Melnikov A, Galinsky K, Rogov P, Fennell T, van Tyne D et al. Hybrid selection for sequencing pathogen genomes from clinical samples. Genome Biol 2011;12:R73 [CrossRef][PubMed]
    [Google Scholar]
  27. Feehery GR, Yigit E, Oyola SO, Langhorst BW, Schmidt VT et al. A method for selectively enriching microbial DNA from contaminating vertebrate host DNA. PLoS One 2013;8:e76096 [CrossRef][PubMed]
    [Google Scholar]
  28. Horz HP, Scheer S, Vianna ME, Conrads G. New methods for selective isolation of bacterial DNA from human clinical specimens. Anaerobe 2010;16:47–53 [CrossRef][PubMed]
    [Google Scholar]
  29. World Health Organisation WHO Alliance for the Global Elimination of Blinding Trachoma by the year 2020. Progress report on elimination of trachoma, 2013. Wkly Epidemiol Rec 2014;89:421–428[PubMed]
    [Google Scholar]
  30. Lamoth F, Pillonel T, Greub G. Waddlia: an emerging pathogen and a model organism to study the biology of chlamydiae. Microbes Infect 2015;17:732–737 [CrossRef]
    [Google Scholar]
  31. Lagkouvardos I, Weinmaier T, Lauro FM, Cavicchioli R, Rattei T et al. Integrating metagenomic and amplicon databases to resolve the phylogenetic and ecological diversity of the Chlamydiae. ISME J 2014;8:115–125 [CrossRef][PubMed]
    [Google Scholar]
  32. Taylor-Brown A, Vaughan L, Greub G, Timms P, Polkinghorne A. Twenty years of research into Chlamydia-like organisms: a revolution in our understanding of the biology and pathogenicity of members of the phylum Chlamydiae. Pathog Dis 2015;73:1–15 [CrossRef][PubMed]
    [Google Scholar]
  33. Nunes A, Gomes JP. Evolution, phylogeny, and molecular epidemiology of Chlamydia. Infect Genet Evol 2014;23:49–64 [CrossRef][PubMed]
    [Google Scholar]
  34. Bachmann NL, Polkinghorne A, Timms P. Chlamydia genomics: providing novel insights into chlamydial biology. Trends Microbiol 2014;22:464–472 [CrossRef][PubMed]
    [Google Scholar]
  35. Bastidas RJ, Valdivia RH. Emancipating Chlamydia: advances in the genetic manipulation of a recalcitrant intracellular pathogen. Microbiol Mol Biol Rev 2016;80:411–427 [CrossRef][PubMed]
    [Google Scholar]
  36. Stephens RS, Kalman S, Lammel C, Fan J, Marathe R et al. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 1998;282:754–759 [CrossRef][PubMed]
    [Google Scholar]
  37. Millman KL, Tavaré S, Dean D. Recombination in the ompA gene but not the omcB gene of Chlamydia contributes to serovar-specific differences in tissue tropism, immune surveillance, and persistence of the organism. J Bacteriol 2001;183:5997–6008 [CrossRef][PubMed]
    [Google Scholar]
  38. Gomes JP, Bruno WJ, Borrego MJ, Dean D. Recombination in the genome of Chlamydia trachomatis involving the polymorphic membrane protein C gene relative to ompA and evidence for horizontal gene transfer. J Bacteriol 2004;186:4295–4306 [CrossRef][PubMed]
    [Google Scholar]
  39. Read TD, Joseph SJ, Didelot X, Liang B, Patel L et al. Comparative analysis of Chlamydia psittaci genomes reveals the recent emergence of a pathogenic lineage with a broad host range. MBio 2013;4:e00604-12 [CrossRef][PubMed]
    [Google Scholar]
  40. Joseph SJ, Marti H, Didelot X, Read TD, Dean D. Tetracycline selective pressure and homologous recombination shape the evolution of Chlamydia suis: a recently identified zoonotic pathogen. Genome Biol Evol 2016;8:2613–2623 [CrossRef][PubMed]
    [Google Scholar]
  41. Seth-Smith HMB, Busó LS, Livingstone M, Sait M, Harris SR et al. European Chlamydia abortus livestock isolate genomes reveal unusual stability and limited diversity, reflected in geographical signatures. BMC Genomics 2017;18:344 [CrossRef][PubMed]
    [Google Scholar]
  42. Harris SR, Clarke IN, Seth-Smith HM, Solomon AW, Cutcliffe LT et al. Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nat Genet 2012;44:413–419 [CrossRef][PubMed]
    [Google Scholar]
  43. Joseph SJ, Read TD. Genome-wide recombination in Chlamydia trachomatis. Nat Genet 2012;44:364–366 [CrossRef][PubMed]
    [Google Scholar]
  44. Belland RJ, Zhong G, Crane DD, Hogan D, Sturdevant D et al. Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc Natl Acad Sci USA 2003;100:8478–8483 [CrossRef][PubMed]
    [Google Scholar]
  45. Albrecht M, Sharma CM, Reinhardt R, Vogel J, Rudel T. Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome. Nucleic Acids Res 2010;38:868–877 [CrossRef][PubMed]
    [Google Scholar]
  46. Borges V, Nunes A, Ferreira R, Borrego MJ, Gomes JP. Directional evolution of Chlamydia trachomatis towards niche-specific adaptation. J Bacteriol 2012;194:6143–6153 [CrossRef][PubMed]
    [Google Scholar]
  47. Somboonna N, Wan R, Ojcius DM, Pettengill MA, Joseph SJ et al. Hypervirulent Chlamydia trachomatis clinical strain is a recombinant between lymphogranuloma venereum (L(2)) and D lineages. MBio 2011;2:e00045-11 [CrossRef][PubMed]
    [Google Scholar]
  48. Hosono S, Faruqi AF, Dean FB, du Y, Sun Z et al. Unbiased whole-genome amplification directly from clinical samples. Genome Res 2003;13:954–964 [CrossRef][PubMed]
    [Google Scholar]
  49. Detter JC, Jett JM, Lucas SM, Dalin E, Arellano AR et al. Isothermal strand-displacement amplification applications for high-throughput genomics. Genomics 2002;80:691–698 [CrossRef][PubMed]
    [Google Scholar]
  50. Andersson P, Klein M, Lilliebridge RA, Giffard PM. Sequences of multiple bacterial genomes and a Chlamydia trachomatis genotype from direct sequencing of DNA derived from a vaginal swab diagnostic specimen. Clin Microbiol Infect 2013;19:E405E408 [CrossRef][PubMed]
    [Google Scholar]
  51. Zheng Z, Deng X, Chen J. Whole-Genome Sequence of "Candidatus Liberibacter asiaticus" from Guangdong, China. Genome Announc 2014;2:e00273-14 [CrossRef][PubMed]
    [Google Scholar]
  52. Seth-Smith HM, Dourala N, Fehr A, Qi W, Katharios P et al. Emerging pathogens of gilthead seabream: characterisation and genomic analysis of novel intracellular β-proteobacteria. Isme J 2016;10:1791–1803 [CrossRef][PubMed]
    [Google Scholar]
  53. Qi W, Vaughan L, Katharios P, Schlapbach R, Seth-Smith HM. Host-associated genomic features of the novel uncultured intracellular pathogen Ca. Ichthyocystis revealed by direct sequencing of epitheliocysts. Genome Biol Evol 2016;8:1672–1689 [CrossRef][PubMed]
    [Google Scholar]
  54. Katharios P, Seth-Smith HM, Fehr A, Mateos JM, Qi W et al. Environmental marine pathogen isolation using mesocosm culture of sharpsnout seabream: striking genomic and morphological features of novel Endozoicomonas sp. Sci Rep 2015;5:17609 [CrossRef][PubMed]
    [Google Scholar]
  55. Taylor-Brown A, Spang L, Borel N, Polkinghorne A. Culture-independent metagenomics supports discovery of uncultivable bacteria within the genus Chlamydia. Sci Rep 2017;7:10661 [CrossRef][PubMed]
    [Google Scholar]
  56. Taylor-Brown A, Pillonel T, Bridle A, Qi W, Bachmann NL et al. Culture-independent genomics of a novel chlamydial pathogen of fish provides new insight into host-specific adaptations utilized by these intracellular bacteria. Environ Microbiol 2017;19:1899–1913 [CrossRef][PubMed]
    [Google Scholar]
  57. Taylor-Brown A, Bachmann NL, Borel N, Polkinghorne A. Culture-independent genomic characterisation of Candidatus Chlamydia sanzinia, a novel uncultivated bacterium infecting snakes. BMC Genomics 2016;17:710 [CrossRef][PubMed]
    [Google Scholar]
  58. Collingro A, Köstlbacher S, Mussmann M, Stepanauskas R, Hallam SJ et al. Unexpected genomic features in widespread intracellular bacteria: evidence for motility of marine chlamydiae. ISME J 2017;11:2334–2344 [CrossRef][PubMed]
    [Google Scholar]
  59. Rinke C, Lee J, Nath N, Goudeau D, Thompson B et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat Protoc 2014;9:1038–1048 [CrossRef][PubMed]
    [Google Scholar]
  60. Stepanauskas R, Fergusson EA, Brown J, Poulton NJ, Tupper B et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat Commun 2017;8:84 [CrossRef][PubMed]
    [Google Scholar]
  61. McLean JS, Lombardo MJ, Badger JH, Edlund A, Novotny M et al. Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc Natl Acad Sci USA 2013;110:E2390E2399 [CrossRef][PubMed]
    [Google Scholar]
  62. Skjerve E, Rørvik LM, Olsvik O. Detection of Listeria monocytogenes in foods by immunomagnetic separation. Appl Environ Microbiol 1990;56:3478–3481[PubMed]
    [Google Scholar]
  63. Hedrum A, Lundeberg J, Påhlson C, Uhlén M. Immunomagnetic recovery of Chlamydia trachomatis from urine with subsequent colorimetric DNA detection. PCR Methods Appl 1992;2:167–171 [CrossRef][PubMed]
    [Google Scholar]
  64. Seth-Smith HM, Harris SR, Scott P, Parmar S, Marsh P et al. Generating whole bacterial genome sequences of low-abundance species from complex samples with IMS-MDA. Nat Protoc 2013;8:2404–2412 [CrossRef][PubMed]
    [Google Scholar]
  65. Seth-Smith HM, Harris SR, Skilton RJ, Radebe FM, Golparian D et al. Whole-genome sequences of Chlamydia trachomatis directly from clinical samples without culture. Genome Res 2013;23:855–866 [CrossRef][PubMed]
    [Google Scholar]
  66. Putman TE, Suchland RJ, Ivanovitch JD, Rockey DD. Culture-independent sequence analysis of Chlamydia trachomatis in urogenital specimens identifies regions of recombination and in-patient sequence mutations. Microbiology 2013;159:2109–2117 [CrossRef][PubMed]
    [Google Scholar]
  67. Rodrigue S, Malmstrom RR, Berlin AM, Birren BW, Henn MR et al. Whole genome amplification and de novo assembly of single bacterial cells. PLoS One 2009;4:e6864 [CrossRef][PubMed]
    [Google Scholar]
  68. Pérez Chaparro PJ, McCulloch JA, Cerdeira LT, Al-Dilaimi A, Canto de Sá LL et al. Whole genome sequencing of environmental Vibrio cholerae O1 from 10 nanograms of DNA using short reads. J Microbiol Methods 2011;87:208–212 [CrossRef][PubMed]
    [Google Scholar]
  69. Christiansen MT, Brown AC, Kundu S, Tutill HJ, Williams R et al. Whole-genome enrichment and sequencing of Chlamydia trachomatis directly from clinical samples. BMC Infect Dis 2014;14:591 [CrossRef][PubMed]
    [Google Scholar]
  70. Depledge DP, Palser AL, Watson SJ, Lai IY, Gray ER et al. Specific capture and whole-genome sequencing of viruses from clinical samples. PLoS One 2011;6:e27805 [CrossRef][PubMed]
    [Google Scholar]
  71. Hadfield J, Harris SR, Seth-Smith HMB, Parmar S, Andersson P et al. Comprehensive global genome dynamics of Chlamydia trachomatis show ancient diversification followed by contemporary mixing and recent lineage expansion. Genome Res 2017;27:1220–1229 [CrossRef][PubMed]
    [Google Scholar]
  72. Bachmann NL, Sullivan MJ, Jelocnik M, Myers GS, Timms P et al. Culture-independent genome sequencing of clinical samples reveals an unexpected heterogeneity of infections by Chlamydia pecorum. J Clin Microbiol 2015;53:1573–1581 [CrossRef][PubMed]
    [Google Scholar]
  73. Sullivan MJ, Bachmann NL, Timms P, Polkinghorne A. HapFlow: visualizing haplotypes in sequencing data. Bioinformatics 2016;32: [CrossRef][PubMed]
    [Google Scholar]
  74. Branley J, Bachmann NL, Jelocnik M, Myers GS, Polkinghorne A. Australian human and parrot Chlamydia psittaci strains cluster within the highly virulent 6BC clade of this important zoonotic pathogen. Sci Rep 2016;6:30019 [CrossRef][PubMed]
    [Google Scholar]
  75. Roulis E, Bachmann NL, Myers GS, Huston W, Summersgill J et al. Comparative genomic analysis of human Chlamydia pneumoniae isolates from respiratory, brain and cardiac tissues. Genomics 2015;106:373–383 [CrossRef][PubMed]
    [Google Scholar]
  76. Kalman S, Mitchell W, Marathe R, Lammel C, Fan J et al. Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet 1999;21:385–389 [CrossRef][PubMed]
    [Google Scholar]
  77. Joseph SJ, Li B, Ghonasgi T, Haase CP, Qin ZS et al. Direct amplification, sequencing and profiling of Chlamydia trachomatis strains in single and mixed infection clinical samples. PLoS One 2014;9:e99290 [CrossRef][PubMed]
    [Google Scholar]
  78. Kiss MM, Ortoleva-Donnelly L, Beer NR, Warner J, Bailey CG et al. High-throughput quantitative polymerase chain reaction in picoliter droplets. Anal Chem 2008;80:8975–8981 [CrossRef][PubMed]
    [Google Scholar]
  79. Pillonel T, Bertelli C, Salamin N, Greub G. Taxogenomics of the order Chlamydiales. Int J Syst Evol Microbiol 2015;65:1381–1393 [CrossRef][PubMed]
    [Google Scholar]
  80. Jelocnik M, Bachmann NL, Kaltenboeck B, Waugh C, Woolford L et al. Genetic diversity in the plasticity zone and the presence of the chlamydial plasmid differentiates Chlamydia pecorum strains from pigs, sheep, cattle, and koalas. BMC Genomics 2015;16:893 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000145
Loading
/content/journal/mgen/10.1099/mgen.0.000145
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error