1887

Abstract

Antimicrobial resistance (AMR) is one of the major threats to human and animal health worldwide, yet few high-throughput tools exist to analyse and predict the resistance of a bacterial isolate from sequencing data. Here we present a new tool, ARIBA, that identifies AMR-associated genes and single nucleotide polymorphisms directly from short reads, and generates detailed and customizable output. The accuracy and advantages of ARIBA over other tools are demonstrated on three datasets from Gram-positive and Gram-negative bacteria, with ARIBA outperforming existing methods.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000131
2017-09-04
2024-09-21
Loading full text...

Full text loading...

/deliver/fulltext/mgen/3/10/mgen000131.html?itemId=/content/journal/mgen/10.1099/mgen.0.000131&mimeType=html&fmt=ahah

References

  1. O'Neill J. Tackling drug-resistant infections globally: Final report and recommendations. The review on antimicrobial resistance London: HM Government and the Wellcome Trust; 2016 https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf
    [Google Scholar]
  2. Inouye M, Dashnow H, Raven LA, Schultz MB, Pope BJ et al. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 2014; 6:90 [View Article][PubMed]
    [Google Scholar]
  3. Clausen PT, Zankari E, Aarestrup FM, Lund O. Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data. J Antimicrob Chemother 2016; 71:2484–2488 [View Article][PubMed]
    [Google Scholar]
  4. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis . Nat Commun 2015; 6:10063 [View Article][PubMed]
    [Google Scholar]
  5. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article][PubMed]
    [Google Scholar]
  6. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 2014; 58:212–220 [View Article][PubMed]
    [Google Scholar]
  7. De Man TJ, Limbago BM. SSTAR, a stand-alone easy-to-use antimicrobial resistance gene predictor. mSphere 2016; 1:e00050-15 [View Article][PubMed]
    [Google Scholar]
  8. Davis JJ, Boisvert S, Brettin T, Kenyon RW, Mao C et al. Antimicrobial resistance prediction in PATRIC and RAST. Sci Rep 2016; 6:27930 [View Article][PubMed]
    [Google Scholar]
  9. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  10. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017; 45:D566–D573 [View Article][PubMed]
    [Google Scholar]
  11. Lakin SM, Dean C, Noyes NR, Dettenwanger A, Ross AS et al. MEGARes: an antimicrobial resistance database for high throughput sequencing. Nucleic Acids Res 2017; 45:D574–D580 [View Article][PubMed]
    [Google Scholar]
  12. Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM et al. Phandango: an interactive viewer for bacterial population genomics. bioRxiv 2017
    [Google Scholar]
  13. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article][PubMed]
    [Google Scholar]
  14. Chen L, Yang J, Yu J, Yao Z, Sun L et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2005; 33:D325–D328 [View Article][PubMed]
    [Google Scholar]
  15. Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595 [View Article][PubMed]
    [Google Scholar]
  16. Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 2010; 26:680–682 [View Article][PubMed]
    [Google Scholar]
  17. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 2016; 32:2103–2110 [View Article][PubMed]
    [Google Scholar]
  18. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:R12 [View Article][PubMed]
    [Google Scholar]
  19. Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods 2012; 9:357–359 [View Article][PubMed]
    [Google Scholar]
  20. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article][PubMed]
    [Google Scholar]
  21. Sukumaran J, Holder MT. DendroPy: a python library for phylogenetic computing. Bioinformatics 2010; 26:1569–1571 [View Article][PubMed]
    [Google Scholar]
  22. Connor TR, Loman NJ, Thompson S, Smith A, Southgate J et al. CLIMB (the Cloud Infrastructure for Microbial Bioinformatics): an online resource for the medical microbiology community. Microb Genom 2016; 2:1–6 [View Article][PubMed]
    [Google Scholar]
  23. Howden BP, Holt KE, Lam MM, Seemann T, Ballard S et al. Genomic insights to control the emergence of vancomycin-resistant enterococci. MBio 2013; 4:e00412-13 [View Article][PubMed]
    [Google Scholar]
  24. Holt KE, Baker S, Weill FX, Holmes EC, Kitchen A et al. Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nat Genet 2012; 44:1056–1059 [View Article][PubMed]
    [Google Scholar]
  25. Grad YH, Harris SR, Kirkcaldy RD, Green AG, Marks DS et al. Genomic epidemiology of gonococcal resistance to extended-spectrum cephalosporins, macrolides, and fluoroquinolones in the United States, 2000–2013. J Infect Dis 2016; 214:1579–1587 [View Article][PubMed]
    [Google Scholar]
  26. Grad YH, Kirkcaldy RD, Trees D, Dordel J, Harris SR et al. Genomic epidemiology of Neisseria gonorrhoeae with reduced susceptibility to cefixime in the USA: a retrospective observational study. Lancet Infect Dis 2014; 14:220–226 [View Article][PubMed]
    [Google Scholar]
  27. Demczuk W, Lynch T, Martin I, van Domselaar G, Graham M et al. Whole-genome phylogenomic heterogeneity of Neisseria gonorrhoeae isolates with decreased cephalosporin susceptibility collected in Canada between 1989 and 2013. J Clin Microbiol 2015; 53:191–200 [View Article][PubMed]
    [Google Scholar]
  28. Demczuk W, Martin I, Peterson S, Bharat A, van Domselaar G et al. Genomic epidemiology and molecular resistance mechanisms of azithromycin-resistant Neisseria gonorrhoeae in Canada from 1997 to 2014. J Clin Microbiol 2016; 54:1304–1313 [View Article][PubMed]
    [Google Scholar]
  29. Chisholm SA, Wilson J, Alexander S, Tripodo F, Al-Shahib A et al. An outbreak of high-level azithromycin resistant Neisseria gonorrhoeae in England. Sex Transm Infect 2016; 92:365–367 [View Article][PubMed]
    [Google Scholar]
  30. Unemo M, Golparian D, Sánchez-Busó L, Grad Y, Jacobsson S et al. The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization. J Antimicrob Chemother 2016; 71:3096–3108 [View Article][PubMed]
    [Google Scholar]
  31. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. CLUSTAL W and CLUSTAL X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  32. Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010; 27:221–224 [View Article][PubMed]
    [Google Scholar]
  33. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013
    [Google Scholar]
  34. Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20:1297–1303 [View Article][PubMed]
    [Google Scholar]
  35. Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EK et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 2010; 327:469–474 [View Article][PubMed]
    [Google Scholar]
  36. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2016; 2:e000056 [View Article][PubMed]
    [Google Scholar]
  37. Simonsen, Mailund T, Pedersen CNS. Rapid neighbour-joining. In Crandall K, Lagergren J. (editors) Algorithms in Bioinformatics, Proceedings of the 8th International Workshop (WABI 2008) Berlin: Springer Verlag; 2008 pp. 113–122
    [Google Scholar]
  38. Homan WL, Tribe D, Poznanski S, Li M, Hogg G et al. Multilocus sequence typing scheme for Enterococcus faecium . J Clin Microbiol 2002; 40:1963–1971 [View Article][PubMed]
    [Google Scholar]
  39. Page AJ, Alikhan N-F, Carleton HA, Seemann T, Keane JA et al. Comparison of multi-locus sequence typing software for next generation sequencing data. Microb Genom 2017 http://mgen.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.000124
    [Google Scholar]
  40. Courvalin P. Vancomycin resistance in Gram-positive cocci. Clin Infect Dis 2006; 42:S25–S34 [View Article][PubMed]
    [Google Scholar]
  41. Healy VL, Lessard IA, Roper DI, Knox JR, Walsh CT. Vancomycin resistance in enterococci: reprogramming of the D-ala-D-ala ligases in bacterial peptidoglycan biosynthesis. Chem Biol 2000; 7:R109–R119 [View Article][PubMed]
    [Google Scholar]
  42. Ojo KK, Kehrenberg C, Schwarz S, Odelola HA. Identification of a complete dfrA14 gene cassette integrated at a secondary site in a resistance plasmid of uropathogenic Escherichia coli from Nigeria. Antimicrob Agents Chemother 2002; 46:2054–2055 [View Article][PubMed]
    [Google Scholar]
  43. Chisholm SA, Dave J, Ison CA. High-level azithromycin resistance occurs in Neisseria gonorrhoeae as a result of a single point mutation in the 23S rRNA genes. Antimicrob Agents Chemother 2010; 54:3812–3816 [View Article][PubMed]
    [Google Scholar]
  44. Ng LK, Martin I, Liu G, Bryden L. Mutation in 23S rRNA associated with macrolide resistance in Neisseria gonorrhoeae . Antimicrob Agents Chemother 2002; 46:3020–3025[PubMed]
    [Google Scholar]
  45. Johnson SR, Grad Y, Abrams AJ, Pettus K, Trees DL. Use of whole-genome sequencing data to analyze 23S rRNA-mediated azithromycin resistance. Int J Antimicrob Agents 2017; 49:252–254 [View Article][PubMed]
    [Google Scholar]
  46. Grad YH, Harris SR, Kirkcaldy RD, Green AG, Marks DS et al. Genomic epidemiology of gonococcal resistance to extended-spectrum cephalosporins, macrolides, and fluoroquinolones in the United States, 2000–2013. J Infect Dis 2016; 214:1579–1587 [View Article][PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000131
Loading
/content/journal/mgen/10.1099/mgen.0.000131
Loading

Data & Media loading...

Supplements

Supplementary File 2

Supplementary File 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error