1887

Abstract

Sporulation is a survival strategy, adapted by bacterial cells in response to harsh environmental adversities. The adaptation potential differs between strains and the variations may arise from differences in gene regulation. Gene networks are a valuable way of studying such regulation processes and establishing associations between genes. We reconstructed and compared sporulation gene co-expression networks (GCNs) of the model laboratory strain Bacillus subtilis 168 and the food-borne industrial isolate Bacillus amyloliquefaciens. Transcriptome data obtained from samples of six stages during the sporulation process were used for network inference. Subsequently, a gene set enrichment analysis was performed to compare the reconstructed GCNs of B. subtilis 168 and B. amyloliquefaciens with respect to biological functions, which showed the enriched modules with coherent functional groups associated with sporulation. On basis of the GCNs and time-evolution of differentially expressed genes, we could identify novel candidate genes strongly associated with sporulation in B. subtilis 168 and B. amyloliquefaciens. The GCNs offer a framework for exploring transcription factors, their targets, and co-expressed genes during sporulation. Furthermore, the methodology described here can conveniently be applied to other species or biological processes.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000157
2018-02-09
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/2/mgen000157.html?itemId=/content/journal/mgen/10.1099/mgen.0.000157&mimeType=html&fmt=ahah

References

  1. de Hoon MJ, Eichenberger P, Vitkup D. Hierarchical evolution of the bacterial sporulation network. Curr Biol 2010;20:R735–R745 [CrossRef][PubMed]
    [Google Scholar]
  2. Driks A, Eichenberger P. The spore coat. Microbiol Spectr 2016;4: [CrossRef][PubMed]
    [Google Scholar]
  3. Eijlander RT, de Jong A, Krawczyk AO, Holsappel S, Kuipers OP. SporeWeb: an interactive journey through the complete sporulation cycle of Bacillus subtilis. Nucleic Acids Res 2014;42:D685–D691 [CrossRef][PubMed]
    [Google Scholar]
  4. Bate AR, Bonneau R, Eichenberger P. Bacillus subtilis systems biology: applications of -omics techniques to the study of endospore formation. Microbiol Spectr 2014;2: [CrossRef][PubMed]
    [Google Scholar]
  5. Fimlaid KA, Shen A. Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes. Curr Opin Microbiol 2015;24:88–95 [CrossRef][PubMed]
    [Google Scholar]
  6. Fimlaid KA, Bond JP, Schutz KC, Putnam EE, Leung JM et al. Global analysis of the sporulation pathway of Clostridium difficile. PLoS Genet 2013;9:e1003660 [CrossRef][PubMed]
    [Google Scholar]
  7. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 2000;64:548–572 [CrossRef][PubMed]
    [Google Scholar]
  8. Hilbert DW, Piggot PJ. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol Biol Rev 2004;68:234–262 [CrossRef][PubMed]
    [Google Scholar]
  9. Higgins D, Dworkin J. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol Rev 2012;36:131–148 [CrossRef][PubMed]
    [Google Scholar]
  10. Chastanet A, Vitkup D, Yuan GC, Norman TM, Liu JS et al. Broadly heterogeneous activation of the master regulator for sporulation in Bacillus subtilis. Proc Natl Acad Sci USA 2010;107:8486–8491 [CrossRef][PubMed]
    [Google Scholar]
  11. Narula J, Devi SN, Fujita M, Igoshin OA. Ultrasensitivity of the Bacillus subtilis sporulation decision. Proc Natl Acad Sci USA 2012;109:E3513E3522 [CrossRef][PubMed]
    [Google Scholar]
  12. Ihekwaba AE, Mura I, Barker GC. Computational modelling and analysis of the molecular network regulating sporulation initiation in Bacillus subtilis. BMC Syst Biol 2014;8:119-014-0119-x [CrossRef][PubMed]
    [Google Scholar]
  13. Horvath S, Dong J. Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol 2008;4:e1000117 [CrossRef][PubMed]
    [Google Scholar]
  14. Arrieta-Ortiz ML, Hafemeister C, Bate AR, Chu T, Greenfield A et al. An experimentally supported model of the Bacillus subtilis global transcriptional regulatory network. Mol Syst Biol 2015;11:839 [CrossRef][PubMed]
    [Google Scholar]
  15. Mauri M, Klumpp S. A model for sigma factor competition in bacterial cells. PLoS Comput Biol 2014;10:e1003845 [CrossRef][PubMed]
    [Google Scholar]
  16. Schultz D, Wolynes PG, Ben Jacob E, Onuchic JN. Deciding fate in adverse times: sporulation and competence in Bacillus subtilis. Proc Natl Acad Sci USA 2009;106:21027–21034 [CrossRef][PubMed]
    [Google Scholar]
  17. Jabbari S, Heap JT, King JR. Mathematical modelling of the sporulation-initiation network in Bacillus subtilis revealing the dual role of the putative quorum-sensing signal molecule PhrA. Bull Math Biol 2011;73:181–211 [CrossRef][PubMed]
    [Google Scholar]
  18. Irizarry RA, Wang C, Zhou Y, Speed TP. Gene set enrichment analysis made simple. Stat Methods Med Res 2009;18:565–575 [CrossRef][PubMed]
    [Google Scholar]
  19. de Jong A, van der Meulen S, Kuipers OP, Kok J. T-REx: transcriptome analysis webserver for RNA-seq expression data. BMC Genomics 2015;16:663 [CrossRef][PubMed]
    [Google Scholar]
  20. Strauch MA, Trach KA, Day J, Hoch JA. Spo0A activates and represses its own synthesis by binding at its dual promoters. Biochimie 1992;74:619–626 [CrossRef][PubMed]
    [Google Scholar]
  21. Li XY, MacArthur S, Bourgon R, Nix D, Pollard DA et al. Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm. PLoS Biol 2008;6:e27 [CrossRef][PubMed]
    [Google Scholar]
  22. Shimoni Y, Friedlander G, Hetzroni G, Niv G, Altuvia S et al. Regulation of gene expression by small non-coding RNAs: a quantitative view. Mol Syst Biol 2007;3:138 [CrossRef][PubMed]
    [Google Scholar]
  23. Nicolas P, Mäder U, Dervyn E, Rochat T, Leduc A et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 2012;335:1103–1106 [CrossRef][PubMed]
    [Google Scholar]
  24. Peng J, Wang P, Zhou N, Zhu J. Partial correlation estimation by joint sparse regression models. J Am Stat Assoc 2009;104:735–746 [CrossRef][PubMed]
    [Google Scholar]
  25. Marbach D, Schaffter T, Mattiussi C, Floreano D. Generating realistic in silico gene networks for performance assessment of reverse engineering methods. J Comput Biol 2009;16:229–239 [CrossRef][PubMed]
    [Google Scholar]
  26. Zhong R, Allen JD, Xiao G, Xie Y. Ensemble-based network aggregation improves the accuracy of gene network reconstruction. PLoS One 2014;9:e106319 [CrossRef][PubMed]
    [Google Scholar]
  27. Krawczyk AO. Diversity in Sporulation and Spore Properties of Foodborne Bacillus Strains Groningen, The Netherlands: University of Groningen; 2017
    [Google Scholar]
  28. Xiao Y, van Hijum SA, Abee T, Wells-Bennik MH. Genome-wide transcriptional profiling of Clostridium perfringens SM101 during sporulation extends the core of putative sporulation genes and genes determining spore properties and germination characteristics. PLoS One 2015;10:e0127036 [CrossRef][PubMed]
    [Google Scholar]
  29. van der Meulen SB, de Jong A, Kok J. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism. RNA Biol 2016;13:353–366 [CrossRef][PubMed]
    [Google Scholar]
  30. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357–359 [CrossRef][PubMed]
    [Google Scholar]
  31. Michna RH, Commichau FM, Tödter D, Zschiedrich CP, Stülke J. SubtiWiki-a database for the model organism Bacillus subtilis that links pathway, interaction and expression information. Nucleic Acids Res 2014;42:D692–D698 [CrossRef][PubMed]
    [Google Scholar]
  32. Yi G, Sze SH, Thon MR. Identifying clusters of functionally related genes in genomes. Bioinformatics 2007;23:1053–1060 [CrossRef][PubMed]
    [Google Scholar]
  33. Wolfe CJ, Kohane IS, Butte AJ. Systematic survey reveals general applicability of "guilt-by-association" within gene coexpression networks. BMC Bioinformatics 2005;6:227 [CrossRef][PubMed]
    [Google Scholar]
  34. Gillis J, Pavlidis P. "Guilt by association" is the exception rather than the rule in gene networks. PLoS Comput Biol 2012;8:e1002444 [CrossRef][PubMed]
    [Google Scholar]
  35. Hardin J, Mitani A, Hicks L, Vankoten B. A robust measure of correlation between two genes on a microarray. BMC Bioinformatics 2007;8:220 [CrossRef][PubMed]
    [Google Scholar]
  36. Maetschke SR, Ragan MA. Characterizing cancer subtypes as attractors of Hopfield networks. Bioinformatics 2014;30:1273–1279 [CrossRef][PubMed]
    [Google Scholar]
  37. Freyre-González JA, Manjarrez-Casas AM, Merino E, Martinez-Nuñez M, Perez-Rueda E et al. Lessons from the modular organization of the transcriptional regulatory network of Bacillus subtilis. BMC Syst Biol 2013;7:127 [CrossRef][PubMed]
    [Google Scholar]
  38. Michalopoulos I, Pavlopoulos GA, Malatras A, Karelas A, Kostadima MA et al. Human gene correlation analysis (HGCA): a tool for the identification of transcriptionally co-expressed genes. BMC Res Notes 2012;5:265 [CrossRef][PubMed]
    [Google Scholar]
  39. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008;9:559 [CrossRef][PubMed]
    [Google Scholar]
  40. Schäfer J, Strimmer K. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat Appl Genet Mol Biol 2005;4: [CrossRef][PubMed]
    [Google Scholar]
  41. Newman ME, Girvan M. Finding and evaluating community structure in networks. Phys Rev E Stat Nonlin Soft Matter Phys 2004;69:026113 [CrossRef][PubMed]
    [Google Scholar]
  42. Dong J, Horvath S. Understanding network concepts in modules. BMC Syst Biol 2007;1:24 [CrossRef][PubMed]
    [Google Scholar]
  43. Newman ME. Modularity and community structure in networks. Proc Natl Acad Sci USA 2006;103:8577–8582 [CrossRef][PubMed]
    [Google Scholar]
  44. Pons P, Latapy M. Computing communities in large networks using random walks. Physics 2005;;20:44–59
    [Google Scholar]
  45. Pons P, Latapy M. Computing communities in large networks using random walks. J Graph Algorithms Appl 2006;10:191–218 [CrossRef]
    [Google Scholar]
  46. Gasch AP, Eisen MB. Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biol 2002;3:research0059.1 [CrossRef][PubMed]
    [Google Scholar]
  47. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 2000;403:623–627 [CrossRef][PubMed]
    [Google Scholar]
  48. Bardeen JM, Bond JR, Kaiser N, Szalay AS. The statistics of peaks of Gaussian random fields. Astrophys J 1986;304:15–61 [CrossRef]
    [Google Scholar]
  49. Albert R, Jeong H, Barabasi AL. Error and attack tolerance of complex networks. Nature 2000;406:378–382 [CrossRef][PubMed]
    [Google Scholar]
  50. Albert R. Scale-free networks in cell biology. J Cell Sci 2005;118:4947–4957 [CrossRef][PubMed]
    [Google Scholar]
  51. Mcassey MP, Bijma F. A clustering coefficient for complete weighted networks. Netw Sci 2015;3:183–195 [CrossRef]
    [Google Scholar]
  52. Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF et al. Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 2004;430:88–93 [CrossRef][PubMed]
    [Google Scholar]
  53. Patil A, Nakamura H. Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks. FEBS Lett 2006;580:2041–2045 [CrossRef][PubMed]
    [Google Scholar]
  54. Holland SK, Cutting S, Mandelstam J. The possible DNA-binding nature of the regulatory proteins, encoded by spoIID and gerE, involved in the sporulation of Bacillus subtilis. J Gen Microbiol 1987;133:2381–2391 [CrossRef][PubMed]
    [Google Scholar]
  55. Fujita M, González-Pastor JE, Losick R. High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J Bacteriol 2005;187:1357–1368 [CrossRef][PubMed]
    [Google Scholar]
  56. Fujita M, Losick R. Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Genes Dev 2005;19:2236–2244 [CrossRef][PubMed]
    [Google Scholar]
  57. Eichenberger P, Jensen ST, Conlon EM, van Ooij C, Silvaggi J et al. The σE regulon and the identification of additional sporulation genes in Bacillus subtilis. J Mol Biol 2003;327:945–972 [CrossRef][PubMed]
    [Google Scholar]
  58. Baerends RJ, Smits WK, de Jong A, Hamoen LW, Kok J et al. Genome2D: a visualization tool for the rapid analysis of bacterial transcriptome data. Genome Biol 2004;5:R37 [CrossRef][PubMed]
    [Google Scholar]
  59. Buescher JM, Liebermeister W, Jules M, Uhr M, Muntel J et al. Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism. Science 2012;335:1099–1103 [CrossRef][PubMed]
    [Google Scholar]
  60. Molle V, Nakaura Y, Shivers RP, Yamaguchi H, Losick R et al. Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J Bacteriol 2003;185:1911–1922 [CrossRef][PubMed]
    [Google Scholar]
  61. Fujita M, Losick R. An investigation into the compartmentalization of the sporulation transcription factor σE in Bacillus subtilis. Mol Microbiol 2002;43:27–38 [CrossRef][PubMed]
    [Google Scholar]
  62. Mossa S, Barthélémy M, Eugene Stanley H, Nunes Amaral LA. Truncation of power law behavior in "scale-free" network models due to information filtering. Phys Rev Lett 2002;88:138701 [CrossRef][PubMed]
    [Google Scholar]
  63. Berendsen EM, Koning RA, Boekhorst J, de Jong A, Kuipers OP et al. High-level heat resistance of spores of Bacillus amyloliquefaciens and Bacillus licheniformis results from the presence of a spoVA operon in a Tn1546 transposon. Front Microbiol 2016;7:1912 [CrossRef][PubMed]
    [Google Scholar]
  64. Nguyen KB, Sreelatha A, Durrant ES, Lopez-Garrido J, Muszewska A et al. Phosphorylation of spore coat proteins by a family of atypical protein kinases. Proc Natl Acad Sci USA 2016;113:E3482E3491 [CrossRef][PubMed]
    [Google Scholar]
  65. Behravan J, Chirakkal H, Masson A, Moir A. Mutations in the gerP locus of Bacillus subtilis and Bacillus cereus affect access of germinants to their targets in spores. J Bacteriol 2000;182:1987–1994 [CrossRef][PubMed]
    [Google Scholar]
  66. Jin N, Wu H, Miao Z, Huang Y, Hu Y et al. Network-based survival-associated module biomarker and its crosstalk with cell death genes in ovarian cancer. Sci Rep 2015;5:11566 [CrossRef][PubMed]
    [Google Scholar]
  67. Zheng L, Halberg R, Roels S, Ichikawa H, Kroos L et al. Sporulation regulatory protein GerE from Bacillus subtilis binds to and can activate or repress transcription from promoters for mother-cell-specific genes. J Mol Biol 1992;226:1037–1050 [CrossRef][PubMed]
    [Google Scholar]
  68. Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 2011;6:e21800 [CrossRef][PubMed]
    [Google Scholar]
  69. Halberg R, Oke V, Kroos L. Effects of Bacillus subtilis sporulation regulatory protein SpoIIID on transcription by σK RNA polymerase in vivo and in vitro. J Bacteriol 1995;177:1888–1891 [CrossRef][PubMed]
    [Google Scholar]
  70. Cangiano G, Mazzone A, Baccigalupi L, Isticato R, Eichenberger P et al. Direct and indirect control of late sporulation genes by GerR of Bacillus subtilis. J Bacteriol 2010;192:3406–3413 [CrossRef][PubMed]
    [Google Scholar]
  71. Dubnau EJ, Carabetta VJ, Tanner AW, Miras M, Diethmaier C et al. A protein complex supports the production of Spo0A-P and plays additional roles for biofilms and the K-state in Bacillus subtilis. Mol Microbiol 2016;101:606–624 [CrossRef][PubMed]
    [Google Scholar]
  72. Phillips ZE, Strauch MA. Bacillus subtilis sporulation and stationary phase gene expression. Cell Mol Life Sci 2002;59:392–402 [CrossRef][PubMed]
    [Google Scholar]
  73. Takamatsu H, Kodama T, Nakayama T, Watabe K. Characterization of the yrbA gene of Bacillus subtilis, involved in resistance and germination of spores. J Bacteriol 1999;181:4986–4994[PubMed]
    [Google Scholar]
  74. Meeske AJ, Rodrigues CD, Brady J, Lim HC, Bernhardt TG et al. High-throughput genetic screens identify a large and diverse collection of new sporulation genes in Bacillus subtilis. PLoS Biol 2016;14:e1002341 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000157
Loading
/content/journal/mgen/10.1099/mgen.0.000157
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error