- Volume 73, Issue 3, 2024
Volume 73, Issue 3, 2024
- Reviews
-
-
-
Clostridioides difficile detection and infection in children: are they just small adults?
More LessClostridioides difficile is a well-recognized healthcare-associated pathogen, with its significance widely recognized in adult populations. Despite this, there is limited data on the significance of detection within paediatric populations, both for individual patient management and wider transmission risk-based considerations. High rates of colonization are understood to occur in infants, with increasing levels up to 11 months, and colonization rates similar to adults by 8 years old. Sources of C. difficile are ubiquitous, with detection in companion animals and food sources, as well as within the clinical and wider environment. Due to the close interactions that occur between children and the environment, it is understandable that increasing recognition is afforded to the community acquisition of C. difficile in children. Other risk factors for the detection of C. difficile in children are similar to those observed in adults, including prior hospitalization and underlying conditions affecting gut health and motility. Recent studies have shown rising awareness of the role of asymptomatic carriage of C. difficile in healthcare transmission. Prior to this, paediatric patient populations were less likely to be screened due to uncertainty regarding the significance of detection; however, this increased awareness has led to a review of possible carriage testing pathways. Despite this increased attention, C. difficile infection remains poorly defined in paediatric populations, with limited dedicated paediatric data sets making comparison challenging. This is further complicated by the fact that infection in children frequently self resolves without additional therapies. Due to this, C. difficile remains a management challenge in paediatric settings.
-
-
-
-
Cancer invasion and anaerobic bacteria: new insights into mechanisms
More LessThere is growing evidence that altered microbiota abundance of a range of specific anaerobic bacteria are associated with cancer, including Peptoniphilus spp., Porphyromonas spp., Fusobacterium spp., Fenollaria spp., Prevotella spp., Sneathia spp., Veillonella spp. and Anaerococcus spp. linked to multiple cancer types. In this review we explore these pathogenic associations. The mechanisms by which bacteria are known or predicted to interact with human cells are reviewed and we present an overview of the interlinked mechanisms and hypotheses of how multiple intracellular anaerobic bacterial pathogens may act together to cause host cell and tissue microenvironment changes associated with carcinogenesis and cancer cell invasion. These include combined effects on changes in cell signalling, DNA damage, cellular metabolism and immune evasion. Strategies for early detection and eradication of anaerobic cancer-associated bacterial pathogens that may prevent cancer progression are proposed.
-
- JMM Profiles
-
-
-
Listeria monocytogenes: the silent assassin
More LessListeriosis is a foodborne infection in humans caused by Listeria monocytogenes. Consumption of contaminated food can lead to severe infection in vulnerable patients, that can be fatal. Clinical manifestations include sepsis and meningitis, and in pregnancy-associated infection, miscarriage and stillbirth. Diagnosis is confirmed by culture and identification of the pathogen from blood, cerebrospinal fluid, vaginal swab, placenta or amniotic fluid. Treatment regimens recommend amoxicillin, ampicillin or an aminoglycoside. Virulence factors mediate bacterial adhesion and invasion of gut epithelial cells. Other factors mediate biofilm formation and tolerance to low temperatures and high salt concentrations facilitating persistence and survival in the environment.
-
-
- Antimicrobial Resistance
-
-
-
Delays to treatment initiation and emergence of drug resistance among new adult tuberculosis patients in Tigray, Northern Ethiopia
Introduction. Studies in Ethiopia have indicated that tuberculosis (TB) patient’s elapsed a long time before initiating treatment.
Gap Statement. However, there is very limited evidence on the association of treatment initiation delay with drug resistance.
Research Aim. To investigate the association of delayed treatment initiation with drug resistance among newly diagnosed TB patients in Tigray, Ethiopia.
Methods. We conducted a follow-up study from October 2018 to June 2020 by recruiting 875 pulmonary tuberculosis (PTB) patients from 21 randomly selected health facilities. Delays to initiate treatment and drug resistance were collected using a standardized questionnaire and standard laboratory investigation. The association of delay to initiate treatment with acquired drug resistance was modelled using penalized maximum-likelihood (PML) regression models. Data were analysed using stata software version 15. Statistical significance was reported whenever the P-value was less than 0.05.
Result. The median total delay to treatment initiation was 62 days with an inter-quartile range of 16–221 days. A unit change in time to initiate treatment reduced the risk of acquired drug resistance by 3 %. Being smear-positive at the end of treatment and after 2 months of treatment initiation were significantly associated with a higher risk of acquired drug resistance. Whereas, having a mild clinical condition was associated with a lower risk of drug resistance.
Conclusion. Time to treatment initiation delay is associated with an increased risk of the emergence of drug resistance. Efforts targeted towards reducing the negative effects of PTB should focus on reducing the length of delay to initiate treatment.
-
-
- Clinical Microbiology
-
-
-
Novel automated antifungal susceptibility testing system for yeasts based on dual-detection algorithm of turbidimetry and colorimetry
Introduction. The increasing prevalence and growing resistance of fungi present a significant peril to public health. There are only four classes of antifungal medicines available today, and few candidates are in clinical trials.
Hypothesis/Gap Statement. Rapid and sensitive diagnostic techniques are lacking for most fungal pathogens, and those that do exist are expensive or hard to obtain.
Aim. This study aimed to evaluate the feasibility of a novel automated antifungal susceptibility testing system, Fungus AST, in comparison to the broth microdilution method (BMD) recommended by the Clinical and Laboratory Standards Institute (CLSI).
Methodology. A total of 101 clinical Candida spp. isolates were collected from the Zengcheng Branch of Nanfang Hospital and subjected to antifungal susceptibility testing. Antifungal susceptibility was assessed using the Fungus AST method and the BMD.
Results. In this study, we introduce a novel automated antifungal susceptibility testing system, Fungus AST, which detects the turbidity and/or colour intensity of microdilution wells using a four-wavelength detection technology in real time and is designed to match the growth characteristics of strains over time. Based on our analysis, all reportable ranges of Fungus AST were suitable for clinical fungal isolates in PR China. Within ±twofold dilutions, reproducibility was 100 %. Considering the BMD as a referenced method, ten antifungal agents (anidulafungin, caspofungin, micafungin, fluconazole, voriconazole, posaconazole, itraconazole, amphotericin B, 5-flucytosine and nystatin) showed an essential agreement of >95 %. The category agreement of five antifungal agents (anidulafungin, caspofungin, micafungin, fluconazole and voriconazole) was excellent at >90 %. One Candida albicans isolate and voriconazole showed a major error (ME) (1.7 %), and no other ME or very ME agents were found.
Conclusion. Given the above, it can be argued that the utilization of Fungus AST is a discretionary automated approach. More improvements are needed in Fungus AST compared to the BMD system for a wider range of clinical isolates, including different types of fungi.
-
-
-
-
Performance of metagenomic next-generation sequencing in cerebrospinal fluid for diagnosis of tuberculous meningitis
More LessPurpose. Metagenomic next-generation sequencing (mNGS) has been widely used in the diagnosis of infectious diseases, while its performance in diagnosis of tuberculous meningitis (TBM) is incompletely characterized. The aim of this study was to assess the performance of mNGS in the diagnosis of TBM, and illustrate the sensitivity and specificity of different methods.
Methods. We retrospectively recruited TBM patients between January 2021 and March 2023 to evaluate the performance of mNGS on cerebrospinal fluid (CSF) samples, in comparison with conventional microbiological testing, including culturing of Mycobacterium tuberculosis (MTB), acid-fast bacillus (AFB) stain, reverse transcription PCR and Xpert MTB/RIF.
Results. Of the 40 enrolled, 34 participants were diagnosed with TBM, including 15(44.12 %) definite and 19(55.88 %) clinical diagnosis based upon clinical manifestations, CSF parameters, brain imaging, pathogen evidence and treatment response. The mNGS method identified sequences of Mycobacterium tuberculosis complex (MTBC) in 11 CSF samples. In patients with definite TBM, the sensitivity, specificity, positive predictive value, negative predictive value and accuracy of mNGS were 78.57, 100, 100, 66.67 and 85 %, respectively. Compared to conventional diagnostic methods, the sensitivity of mNGS (78.57 %) was higher than AFB (0 %), culturing (0 %), RT-PCR (60 %) and Xpert MTB/RIF (14.29 %).
Conclusions. Our study indicates that mNGS of CSF exhibited an overall improved sensitivity over conventional diagnostic methods for TBM and can be considered a front-line CSF test.
-
- Medical Mycology
-
-
-
Anthraquinones against Cryptococcus neoformans sensu stricto: antifungal interaction, biofilm inhibition and pathogenicity in the Caenorhabditis elegans model
Introduction. Cryptococcal biofilms have been associated with persistent infections and antifungal resistance. Therefore, strategies, such as the association of natural compounds and antifungal drugs, have been applied for the prevention of biofilm growth. Moreover, the Caenorhabditis elegans pathogenicity model has been used to investigate the capacity to inhibit the pathogenicity of Cryptococcus neoformans sensu stricto.
Hypothesis. Anthraquinones and antifungals are associated with preventing C. neoformans sensu stricto biofilm formation and disrupting these communities. Antraquinones reduced the C. neoformans sensu stricto pathogenicity in the C. elegans model.
Aim. This study aimed to evaluate the in vitro interaction between aloe emodin, barbaloin or chrysophanol and itraconazole or amphotericin B against growing and mature biofilms of C. neoformans sensu stricto.
Methodology. Compounds and antifungal drugs were added during biofilm formation or after 72 h of growth. Then, the metabolic activity was evaluated by the MTT reduction assay, the biomass by crystal-violet staining and the biofilm morphology by confocal laser scanning microscopy. C. neoformans sensu stricto's pathogenicity was investigated using the nematode C. elegans. Finally, pathogenicity inhibition by aloe emodin, barbarloin and chrysophanol was investigated using this model.
Results. Anthraquinone–antifungal combinations affected the development of biofilms with a reduction of over 60 % in metabolic activity and above 50 % in biomass. Aloe emodin and barbaloin increased the anti-biofilm activity of antifungal drugs. Chrysophanol potentiated the effect of itraconazole against C. neoformans sensu stricto biofilms. The C. elegans mortality rate reached 76.7 % after the worms were exposed to C. neoformans sensu stricto for 96 h. Aloe emodin, barbaloin and chrysophanol reduced the C. elegans pathogenicity with mortality rates of 61.12 %, 65 % and 53.34 %, respectively, after the worms were exposed for 96 h to C. neoformans sensu stricto and these compounds at same time.
Conclusion. These results highlight the potential activity of anthraquinones to increase the effectiveness of antifungal drugs against cryptococcal biofilms.
-
-
- Microbiome and Microbial Ecology in Health
-
-
-
Exploring the diversity of vaginal microbiota between healthy women and cervical cancer patients in India
Introduction. Cervicovaginal diversity has been reported as a predictive biomarker for cervical cancer risk. We recently reported the bio-therapeutic potential of vaginal probiotics from healthy Indian women against vaginal pathogens, isolated from the invasive cervical cancer (ICC) patients.
Gap Statement. The cervicovaginal microflora from cervical cancer patients has not yet been reported from Indian population.
Aim. The present study aimed at comparing the cervicovaginal microbiome between healthy controls (HC) and ICC patients from the Indian population.
Methodology. In total, 30 vaginal swabs (15 from HC and 15 from ICC) were subjected to 16S rRNA gene sequencing. Alpha diversity was evaluated by Shannon and Chao1 index; and beta diversity by principle coordinate analysis (PCoA) of weighted and unweighted UniFrac distances. The relative abundance of the microbial taxa was done according to linear discriminant analysis effect size (LEfSe).
Results. Predominance of Staphylococcus spp. in ICC and Lactobacillus gasseri in HC groups was observed. Alpha-diversity was found to be higher in ICC as compared to HC but was statistically non-significant. LEfSe analysis revealed Bacteroides fragilis and Escherichia coli as the marker genera in ICC with a marked decrease in Lactobacillus sp. Contrarily, in HC, L. gasseri, L. iners and L. fermentum were found to be abundant.
Conclusion. Differences in the vaginal microbiome between healthy and ICC women could help in the early prediction of cervical cancer risk and thus in designing prevention strategies.
-
-
- Prevention, Therapy and Therapeutics
-
-
-
In vitro and in silico assessment of anti-biofilm and anti-quorum sensing properties of 2,4-Di-tert butylphenol against Acinetobacter baumannii
Introduction. Acinetobacter baumannii is a nosocomial pathogen with a high potential to cause food-borne infections. It is designated as a critical pathogen by the World Health Organization due to its multi-drug resistance and mortalities reported. Biofilm governs major virulence factors, which promotes drug resistance in A. baumannii. Thus, a compound with minimum selection pressure on the pathogen can be helpful to breach biofilm-related virulence.
Hypothesis/Gap Statement. To identify anti-biofilm and anti-virulent metabolites from extracts of wild Mangifera indica (mango) brine pickle bacteria that diminishes pathogenesis and resistance of A. baumannii.
Aim. This study reports anti-biofilm and anti-quorum sensing (QS) efficacy of secondary metabolites from bacterial isolates of fermented food origin.
Method. Cell-free supernatants (CFS) of 13 bacterial isolates from fermented mango brine pickles were screened for their efficiency in inhibiting biofilm formation and GC-MS was used to identify its metabolites. Anti-biofilm metabolite was tested on early and mature biofilms, pellicle formation, extra polymeric substances (EPS), cellular adherence, motility and resistance of A. baumannii. Gene expression and in silico studies were also carried out to validate the compounds efficacy.
Results. CFS of TMP6b identified as Bacillus vallismortis, inhibited biofilm production (83.02 %). Of these, major compound was identified as 2,4-Di-tert-butyl phenol (2,4-DBP). At sub-lethal concentrations, 2,4-DBP disrupted both early and mature biofilm formation. Treatment with 2,4-DBP destructed in situ biofilm formed on glass and plastic. In addition, key virulence traits like pellicle (77.5 %), surfactant (95.3 %), EPS production (3-fold) and cell adherence (65.55 %) reduced significantly. A. baumannii cells treated with 2,4-DBP showed enhanced sensitivity towards antibiotics, oxide radicals and blood cells. Expression of biofilm-concomitant virulence genes like csuA/B, pgaC, pgaA, bap, bfmR, katE and ompA along with QS genes abaI, abaR significantly decreased. The in silico studies further validated the higher binding affinity of 2,4-DBP to the AbaR protein than the cognate ligand molecule.
Conclusion. To our knowledge, this is the first report to demonstrate 2,4- DBP has anti-pathogenic potential alone and with antibiotics by in vitro, and in silico studies against A. baumannii. It also indicates its potential use in therapeutics and bio-preservatives.
-
-
Volumes and issues
-
Volume 73 (2024)
-
Volume 72 (2023 - 2024)
-
Volume 71 (2022)
-
Volume 70 (2021)
-
Volume 69 (2020)
-
Volume 68 (2019)
-
Volume 67 (2018)
-
Volume 66 (2017)
-
Volume 65 (2016)
-
Volume 64 (2015)
-
Volume 63 (2014)
-
Volume 62 (2013)
-
Volume 61 (2012)
-
Volume 60 (2011)
-
Volume 59 (2010)
-
Volume 58 (2009)
-
Volume 57 (2008)
-
Volume 56 (2007)
-
Volume 55 (2006)
-
Volume 54 (2005)
-
Volume 53 (2004)
-
Volume 52 (2003)
-
Volume 51 (2002)
-
Volume 50 (2001)
-
Volume 49 (2000)
-
Volume 48 (1999)
-
Volume 47 (1998)
-
Volume 46 (1997)
-
Volume 45 (1996)
-
Volume 44 (1996)
-
Volume 43 (1995)
-
Volume 42 (1995)
-
Volume 41 (1994)
-
Volume 40 (1994)
-
Volume 39 (1993)
-
Volume 38 (1993)
-
Volume 37 (1992)
-
Volume 36 (1992)
-
Volume 35 (1991)
-
Volume 34 (1991)
-
Volume 33 (1990)
-
Volume 32 (1990)
-
Volume 31 (1990)
-
Volume 30 (1989)
-
Volume 29 (1989)
-
Volume 28 (1989)
-
Volume 27 (1988)
-
Volume 26 (1988)
-
Volume 25 (1988)
-
Volume 24 (1987)
-
Volume 23 (1987)
-
Volume 22 (1986)
-
Volume 21 (1986)
-
Volume 20 (1985)
-
Volume 19 (1985)
-
Volume 18 (1984)
-
Volume 17 (1984)
-
Volume 16 (1983)
-
Volume 15 (1982)
-
Volume 14 (1981)
-
Volume 13 (1980)
-
Volume 12 (1979)
-
Volume 11 (1978)
-
Volume 10 (1977)
-
Volume 9 (1976)
-
Volume 8 (1975)
-
Volume 7 (1974)
-
Volume 6 (1973)
-
Volume 5 (1972)
-
Volume 4 (1971)
-
Volume 3 (1970)
-
Volume 2 (1969)
-
Volume 1 (1968)