1887

Abstract

There is growing evidence that altered microbiota abundance of a range of specific anaerobic bacteria are associated with cancer, including spp., spp., spp., spp., spp., spp spp and spp. linked to multiple cancer types. In this review we explore these pathogenic associations. The mechanisms by which bacteria are known or predicted to interact with human cells are reviewed and we present an overview of the interlinked mechanisms and hypotheses of how multiple intracellular anaerobic bacterial pathogens may act together to cause host cell and tissue microenvironment changes associated with carcinogenesis and cancer cell invasion. These include combined effects on changes in cell signalling, DNA damage, cellular metabolism and immune evasion. Strategies for early detection and eradication of anaerobic cancer-associated bacterial pathogens that may prevent cancer progression are proposed.

Funding
This study was supported by the:
  • Prostate Cancer UK (Award RIA15-ST2-029)
    • Principle Award Recipient: ColinS. Cooper
  • Alan Boswell Group Fellowship Funding
    • Principle Award Recipient: RachelHurst
  • Bob Champion Cancer Trust
    • Principle Award Recipient: ColinS. Cooper
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001817
2024-03-28
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/73/3/jmm001817.html?itemId=/content/journal/jmm/10.1099/jmm.0.001817&mimeType=html&fmt=ahah

References

  1. Plummer M, de Martel C, Vignat J, Ferlay J, Bray F et al. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health 2016; 4:e609–16 [View Article] [PubMed]
    [Google Scholar]
  2. Chang AH, Parsonnet J. Role of bacteria in oncogenesis. Clin Microbiol Rev 2010; 23:837–857 [View Article] [PubMed]
    [Google Scholar]
  3. Sinkovics JG. Molecular biology of oncogenic inflammatory processes. I. Non-oncogenic and oncogenic pathogens, intrinsic inflammatory reactions without pathogens, and microRNA/DNA interactions (Review). Int J Oncol 2012; 40:305–349 [View Article] [PubMed]
    [Google Scholar]
  4. Tsai S, Wear DJ, Shih JW, Lo SC. Mycoplasmas and oncogenesis: persistent infection and multistage malignant transformation. Proc Natl Acad Sci USA 1995; 92:10197–10201 [View Article]
    [Google Scholar]
  5. Kaakoush NO, Castaño-Rodríguez N, Man SM, Mitchell HM. Is Campylobacter to esophageal adenocarcinoma as Helicobacter is to gastric adenocarcinoma?. Trends Microbiol 2015; 23:455–462 [View Article] [PubMed]
    [Google Scholar]
  6. Garrett WS. Cancer and the microbiota. Science 2015; 348:80–86 [View Article] [PubMed]
    [Google Scholar]
  7. Lax AJ, Thomas W. How bacteria could cause cancer: one step at a time. Trends Microbiol 2002; 10:293–299 [View Article] [PubMed]
    [Google Scholar]
  8. Khan AA, Bano Y. Salmonella enterica subsp. enterica host-pathogen interactions and their implications in gallbladder cancer. Microb Pathog 2021; 157:105011 [View Article] [PubMed]
    [Google Scholar]
  9. Fan JY, Huang Y, Li Y, Muluh TA, Fu SZ et al. Bacteria in cancer therapy: a new generation of weapons. Cancer Med 2022; 11:4457–4468 [View Article] [PubMed]
    [Google Scholar]
  10. Hurst R, Meader E, Gihawi A, Rallapalli G, Clark J et al. Microbiomes of urine and the prostate are linked to human prostate cancer risk groups. Eur Urol Oncol 2022; 5:412–419 [View Article] [PubMed]
    [Google Scholar]
  11. Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 2020; 579:567–574 [View Article] [PubMed]
    [Google Scholar]
  12. Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 2020; 368:973–980 [View Article] [PubMed]
    [Google Scholar]
  13. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013; 14:207–215 [View Article] [PubMed]
    [Google Scholar]
  14. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012; 22:299–306 [View Article] [PubMed]
    [Google Scholar]
  15. Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 2017; 357:1156–1160 [View Article] [PubMed]
    [Google Scholar]
  16. Dubois A, Borén T. Helicobacter pylori is invasive and it may be a facultative intracellular organism. Cell Microbiol 2007; 9:1108–1116 [View Article] [PubMed]
    [Google Scholar]
  17. Cooper PN, Millar MR, Godwin PGR. Anaerobes and carcinoma of the prostate. BMJ 1988; 296:466–467 [View Article]
    [Google Scholar]
  18. Livingston VW, Alexander-Jackson E. A specific type of organism cultivated from malignancy: bacteriology and proposed classification. Ann N Y Acad Sci 1970; 174:636–654 [View Article] [PubMed]
    [Google Scholar]
  19. Singh B, Fleury C, Jalalvand F, Riesbeck K. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev 2012; 36:1122–1180 [View Article] [PubMed]
    [Google Scholar]
  20. Bacterial Invasion of Host Cells, Chapter 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Cambridge University Press, USA: Cambridge University Press; 2004
    [Google Scholar]
  21. Wessler S, Schneider G, Backert S. Bacterial serine protease HtrA as a promising new target for antimicrobial therapy?. Cell Commun Signal 2017; 15: [View Article]
    [Google Scholar]
  22. Hoy B, Löwer M, Weydig C, Carra G, Tegtmeyer N et al. Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion. EMBO Rep 2010; 11:798–804 [View Article] [PubMed]
    [Google Scholar]
  23. Boehm M, Hoy B, Rohde M, Tegtmeyer N, Bæk KT et al. Rapid paracellular transmigration of Campylobacter jejuni across polarized epithelial cells without affecting TER: role of proteolytic-active HtrA cleaving E-cadherin but not fibronectin. Gut Pathog 2012; 4:3 [View Article] [PubMed]
    [Google Scholar]
  24. Paradise RK, Lauffenburger DA, Van Vliet KJ. Acidic extracellular pH promotes activation of integrin α(V)β(3). PLoS One 2011; 6:e15746 [View Article] [PubMed]
    [Google Scholar]
  25. Vanlaere I, Libert C. Matrix metalloproteinases as drug targets in infections caused by gram-negative bacteria and in septic shock. Clin Microbiol Rev 2009; 22:224–239 [View Article] [PubMed]
    [Google Scholar]
  26. Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez V et al. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol 2019; 9:1370 [View Article] [PubMed]
    [Google Scholar]
  27. Alexander S, Friedl P. Cancer invasion and resistance: interconnected processes of disease progression and therapy failure. Trends Mol Med 2012; 18:13–26 [View Article] [PubMed]
    [Google Scholar]
  28. Kaparakis-Liaskos M, Ferrero RL. Immune modulation by bacterial outer membrane vesicles. Nat Rev Immunol 2015; 15:375–387 [View Article] [PubMed]
    [Google Scholar]
  29. Gui MJ, Dashper SG, Slakeski N, Chen YY, Reynolds EC. Spheres of influence: Porphyromonas gingivalis outer membrane vesicles. Mol Oral Microbiol 2016; 31:365–378 [View Article] [PubMed]
    [Google Scholar]
  30. Cecil JD, O’Brien-Simpson NM, Lenzo JC, Holden JA, Singleton W et al. Outer membrane vesicles prime and activate macrophage inflammasomes and cytokine secretion In Vitro and In Vivo. Front Immunol 2017; 8:1017 [View Article] [PubMed]
    [Google Scholar]
  31. Yu W, Yang L, Li T, Zhang Y. Cadherin signaling in cancer: its functions and role as a therapeutic target. Front Oncol 2019; 9:989 [View Article]
    [Google Scholar]
  32. David JM, Rajasekaran AK. Dishonorable discharge: the oncogenic roles of cleaved E-cadherin fragments. Cancer Res 2012; 72:2917–2923 [View Article] [PubMed]
    [Google Scholar]
  33. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100:57–70 [View Article]
    [Google Scholar]
  34. Weber GF, Bjerke MA, DeSimone DW. Integrins and cadherins join forces to form adhesive networks. J Cell Sci 2011; 124:1183–1193 [View Article] [PubMed]
    [Google Scholar]
  35. Singh B, Su YC, Riesbeck K. Vitronectin in bacterial pathogenesis: a host protein used in complement escape and cellular invasion. Mol Microbiol 2010; 78:545–560 [View Article] [PubMed]
    [Google Scholar]
  36. Eitel J, Heise T, Thiesen U, Dersch P. Cell invasion and IL-8 production pathways initiated by YadA of Yersinia pseudotuberculosis require common signalling molecules (FAK, c-Src, Ras) and distinct cell factors. Cell Microbiol 2005; 7:63–77 [View Article] [PubMed]
    [Google Scholar]
  37. Bergmann S, Lang A, Rohde M, Agarwal V, Rennemeier C et al. Integrin-linked kinase is required for vitronectin-mediated internalization of Streptococcus pneumoniae by host cells. J Cell Sci 2009; 122:256–267 [View Article] [PubMed]
    [Google Scholar]
  38. Lewis AJ, Richards AC, Mulvey MA. Invasion of host cells and tissues by uropathogenic bacteria. Microbiol Spectr 2016; 4: [View Article] [PubMed]
    [Google Scholar]
  39. Pizarro-Cerdá J, Cossart P. Bacterial adhesion and entry into host cells. Cell 2006; 124:715–727 [View Article] [PubMed]
    [Google Scholar]
  40. Yau CYF, Wheeler JJ, Sutton KL, Hedley DW. Inhibition of integrin-linked kinase by a selective small molecule inhibitor, QLT0254, inhibits the PI3K/PKB/mTOR, Stat3, and FKHR pathways and tumor growth, and enhances gemcitabine-induced apoptosis in human orthotopic primary pancreatic cancer xenografts. Cancer Res 2005; 65:1497–1504 [View Article] [PubMed]
    [Google Scholar]
  41. Principles of Bacterial Pathogenesis, Chapter 6, 7, 8, 11, 12, 16 Academic Press; 2001
    [Google Scholar]
  42. Bacterial Pathogenesis Molecular and Cellular Mechanisms, Chapter 4, 5, 9, 11, 14, 15 Caister, Norfolk, UK: Caister Academic Press; 2012
    [Google Scholar]
  43. Stengel K, Zheng Y. Cdc42 in oncogenic transformation, invasion, and tumorigenesis. Cell Signal 2011; 23:1415–1423 [View Article] [PubMed]
    [Google Scholar]
  44. Rubinstein MR, Wang XW, Liu WD, Hao YJ, Cai GF et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013; 14:195–206 [View Article]
    [Google Scholar]
  45. Shang FM, Liu HL. Fusobacterium nucleatum and colorectal cancer: a review. World J Gastrointest Oncol 2018; 10:71–81 [View Article] [PubMed]
    [Google Scholar]
  46. van Schie EH, van Amerongen R. Aberrant WNT/CTNNB1 signaling as a therapeutic target in human breast cancer: weighing the evidence. Front Cell Dev Biol 2020; 8:25 [View Article] [PubMed]
    [Google Scholar]
  47. Silva-García O, Valdez-Alarcón JJ, Baizabal-Aguirre VM. Wnt/β-catenin signaling as a molecular target by pathogenic bacteria. Front Immunol 2019; 10:2135 [View Article] [PubMed]
    [Google Scholar]
  48. Hsu T, Trojanowska M, Watson DK. Ets proteins in biological control and cancer. J of Cell Biochem 2004; 91:896–903 [View Article]
    [Google Scholar]
  49. Sizemore GM, Pitarresi JR, Balakrishnan S, Ostrowski MC. The ETS family of oncogenic transcription factors in solid tumours. Nat Rev Cancer 2017; 17:337–351 [View Article]
    [Google Scholar]
  50. Toller IM, Neelsen KJ, Steger M, Hartung ML, Hottiger MO et al. Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc Natl Acad Sci U S A 2011; 108:14944–14949 [View Article] [PubMed]
    [Google Scholar]
  51. Kim JJ, Tao H, Carloni E, Leung WK, Graham DY et al. Helicobacter pylori impairs DNA mismatch repair in gastric epithelial cells. Gastroenterology 2002; 123:542–553 [View Article]
    [Google Scholar]
  52. Liechti GW, Goldberg JB. Helicobacter pylori salvages purines from extracellular host cell DNA utilizing the outer membrane-associated nuclease NucT. J Bacteriol 2013; 195:4387–4398 [View Article] [PubMed]
    [Google Scholar]
  53. Druzhinin VG, Matskova LV, Demenkov PS, Baranova ED, Volobaev VP et al. Genetic damage in lymphocytes of lung cancer patients is correlated to the composition of the respiratory tract microbiome. Mutagenesis 2021; 36:143–153 [View Article] [PubMed]
    [Google Scholar]
  54. Porschen RK, Sonntag S. Extracellular deoxyribonuclease production by anaerobic bacteria. Appl Microbiol 1974; 27:1031–1033 [View Article] [PubMed]
    [Google Scholar]
  55. Okita Y, Koi M, Takeda K, Ross R, Mukherjee B et al. Fusobacterium nucleatum infection correlates with two types of microsatellite alterations in colorectal cancer and triggers DNA damage. Gut Pathog 2020; 12:46 [View Article] [PubMed]
    [Google Scholar]
  56. Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res 2014; 74:1311–1318 [View Article] [PubMed]
    [Google Scholar]
  57. Nougayrède J-P, Homburg S, Taieb F, Boury M, Brzuszkiewicz E et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 2006; 313:848–851 [View Article] [PubMed]
    [Google Scholar]
  58. Shrestha E, Coulter JB, Guzman W, Ozbek B, Hess MM et al. Oncogenic gene fusions in nonneoplastic precursors as evidence that bacterial infection can initiate prostate cancer. Proc Natl Acad Sci U S A 2021; 118:32 [View Article] [PubMed]
    [Google Scholar]
  59. Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, van Hoeck A, Wood HM et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 2020; 580:269–273 [View Article]
    [Google Scholar]
  60. Wang G, Alamuri P, Maier RJ. The diverse antioxidant systems of Helicobacter pylori. Mol Microbiol 2006; 61:847–860 [View Article] [PubMed]
    [Google Scholar]
  61. Jolivet-Gougeon A, Kovacs B, Le Gall-David S, Le Bars H, Bousarghin L et al. Bacterial hypermutation: clinical implications. J Med Microbiol 2011; 60:563–573 [View Article] [PubMed]
    [Google Scholar]
  62. Shimizu T, Marusawa H, Matsumoto Y, Inuzuka T, Ikeda A et al. Accumulation of somatic mutations in TP53 in gastric epithelium with Helicobacter pylori infection. Gastroenterology 2014; 147:407–417 [View Article]
    [Google Scholar]
  63. Zhang M, Yang D, Gold B. The Adenomatous Polyposis Coli (APC) mutation spectra in different anatomical regions of the large intestine in colorectal cancer. Mutat Res 2018; 810:1–5 [View Article] [PubMed]
    [Google Scholar]
  64. Mateo J, Boysen G, Barbieri CE, Bryant HE, Castro E et al. DNA repair in prostate cancer: biology and clinical implications. Eur Urol 2017; 71:417–425 [View Article] [PubMed]
    [Google Scholar]
  65. Lim B, Mun J, Kim YS, Kim SY. Variability in chromatin architecture and associated DNA repair at genomic positions containing somatic mutations. Cancer Res 2017; 77:2822–2833 [View Article] [PubMed]
    [Google Scholar]
  66. Shrestha E, White JR, Yu S-H, Kulac I, Ertunc O et al. Profiling the urinary microbiome in men with positive versus negative biopsies for prostate cancer. J Urol 2018; 199:161–171 [View Article] [PubMed]
    [Google Scholar]
  67. Ahn J, Sinha R, Pei Z, Dominianni C, Wu J et al. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst 2013; 105:1907–1911 [View Article] [PubMed]
    [Google Scholar]
  68. Medical Microbiology, A guide to Microbial Infections: Pathogenesis, immunity, laboratory investigation and control. Churchill Livingstone Elsevier. Chapter 12 2012 [View Article]
    [Google Scholar]
  69. Mai CW, Kang YB, Pichika MR. Should a Toll-like receptor 4 (TLR-4) agonist or antagonist be designed to treat cancer? TLR-4: its expression and effects in the ten most common cancers. Onco Targets Ther 2013; 6:1573–1587 [View Article] [PubMed]
    [Google Scholar]
  70. Poh AR, Ernst M. Targeting macrophages in cancer: from bench to bedside. Front Oncol 2018; 8:49 [View Article] [PubMed]
    [Google Scholar]
  71. Benoit M, Desnues B, Mege JL. Macrophage polarization in bacterial infections. J Immunol 2008; 181:3733–3739 [View Article] [PubMed]
    [Google Scholar]
  72. Castello LM, Raineri D, Salmi L, Clemente N, Vaschetto R et al. Osteopontin at the crossroads of inflammation and tumor progression. Mediators Inflamm 2017; 2017:4049098 [View Article] [PubMed]
    [Google Scholar]
  73. Coussens LM, Zitvogel L, Palucka AK. Neutralizing tumor-promoting chronic inflammation: a magic bullet?. Science 2013; 339:286–291 [View Article] [PubMed]
    [Google Scholar]
  74. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008; 454:436–444 [View Article]
    [Google Scholar]
  75. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 2008; 8:618–631 [View Article] [PubMed]
    [Google Scholar]
  76. Galeano Niño JL, Wu H, LaCourse KD, Kempchinsky AG, Baryiames A et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature 2022; 611:810–817 [View Article] [PubMed]
    [Google Scholar]
  77. Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov 2018; 8:403–416 [View Article] [PubMed]
    [Google Scholar]
  78. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015; 350:1084–1089 [View Article] [PubMed]
    [Google Scholar]
  79. Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Thierfelder WE et al. Signaling by the cytokine receptor superfamily: JAKs and STATs. Trends Biochem Sci 1994; 19:222–227 [View Article] [PubMed]
    [Google Scholar]
  80. Fu X-L, Duan W, Su C-Y, Mao F-Y, Lv Y-P et al. Interleukin 6 induces M2 macrophage differentiation by STAT3 activation that correlates with gastric cancer progression. Cancer Immunol Immunother 2017; 66:1597–1608 [View Article] [PubMed]
    [Google Scholar]
  81. Guo S, Liu M, Gonzalez-Perez RR. Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta 2011; 1815:197–213 [View Article] [PubMed]
    [Google Scholar]
  82. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12:252–264 [View Article] [PubMed]
    [Google Scholar]
  83. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 2017; 8:561 [View Article] [PubMed]
    [Google Scholar]
  84. Lamprinaki D, Garcia-Vello P, Marchetti R, Hellmich C, McCord KA et al. Siglec-7 mediates immunomodulation by colorectal cancer-associated Fusobacterium nucleatum ssp. animalis. Front Immunol 2021; 12:744184 [View Article] [PubMed]
    [Google Scholar]
  85. Yang C, Chalasani G, Ng YH, Robbins PD. Exosomes released from mycoplasma infected tumor cells activate inhibitory B cells. PLoS One 2012; 7:e36138 [View Article]
    [Google Scholar]
  86. Hoshino D, Kirkbride KC, Costello K, Clark ES, Sinha S et al. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep 2013; 5:1159–1168 [View Article] [PubMed]
    [Google Scholar]
  87. Schwab A, Meyering SS, Lepene B, Iordanskiy S, van Hoek ML et al. Extracellular vesicles from infected cells: potential for direct pathogenesis. Front Microbiol 2015; 6:1132 [View Article] [PubMed]
    [Google Scholar]
  88. Gharaibeh RZ, Jobin C. Microbiota and cancer immunotherapy: in search of microbial signals. Gut 2019; 68:385–388 [View Article] [PubMed]
    [Google Scholar]
  89. He Y, Huang J, Li Q, Xia W, Zhang C et al. Gut microbiota and tumor immune escape: a new perspective for improving tumor immunotherapy. Cancers 2022; 14:5317 [View Article] [PubMed]
    [Google Scholar]
  90. Liss MA, White JR, Goros M, Gelfond J, Leach R et al. Metabolic biosynthesis pathways identified from fecal microbiome associated with prostate cancer. Eur Urol 2018; 74:575–582 [View Article] [PubMed]
    [Google Scholar]
  91. Sha S, Ni L, Stefil M, Dixon M, Mouraviev V. The human gastrointestinal microbiota and prostate cancer development and treatment. Investig Clin Urol 2020; 61:S43–S50 [View Article] [PubMed]
    [Google Scholar]
  92. Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe 2011; 10:324–335 [View Article] [PubMed]
    [Google Scholar]
  93. Caspi R, Billington R, Fulcher CA, Keseler IM, Kothari A et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res 2018; 46:D633–D639 [View Article] [PubMed]
    [Google Scholar]
  94. Andreesen JR. Glycine metabolism in anaerobes. Antonie van Leeuwenhoek 1994; 66:223–237 [View Article]
    [Google Scholar]
  95. Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012; 336:1040–1044 [View Article] [PubMed]
    [Google Scholar]
  96. Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 2013; 13:572–583 [View Article] [PubMed]
    [Google Scholar]
  97. Strmiska V, Michalek P, Eckschlager T, Stiborova M, Adam V et al. Prostate cancer-specific hallmarks of amino acids metabolism: towards a paradigm of precision medicine. Biochim Biophys Acta Rev Cancer 2019; 1871:248–258 [View Article] [PubMed]
    [Google Scholar]
  98. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009; 457:910–914 [View Article] [PubMed]
    [Google Scholar]
  99. Leduc D, Escartin F, Nijhout HF, Reed MC, Liebl U et al. Flavin-dependent thymidylate synthase ThyX activity: implications for the folate cycle in bacteria. J Bacteriol 2007; 189:8537–8545 [View Article] [PubMed]
    [Google Scholar]
  100. Pegg AE. Mammalian polyamine metabolism and function. IUBMB Life 2009; 61:880–894 [View Article] [PubMed]
    [Google Scholar]
  101. Casero RA, Murray Stewart T, Pegg AE. Polyamine metabolism and cancer: treatments, challenges and opportunities. Nat Rev Cancer 2018; 18:681–695 [View Article] [PubMed]
    [Google Scholar]
  102. Vuilleumier S. Bacterial glutathione S-transferases: what are they good for?. J Bacteriol 1997; 179:1431–1441 [View Article] [PubMed]
    [Google Scholar]
  103. Ricci V, Giannouli M, Romano M, Zarrilli R. Helicobacter pylori gamma-glutamyl transpeptidase and its pathogenic role. World J Gastroenterol 2014; 20:630–638 [View Article] [PubMed]
    [Google Scholar]
  104. Srinivasan V, Morowitz HJ. Ancient genes in contemporary persistent microbial pathogens. Biol Bull 2006; 210:1–9 [View Article] [PubMed]
    [Google Scholar]
  105. Antranikian G, Giffhorn F. Citrate metabolism in anaerobic bacteria. Fems Microbiol Lett 1987; 46:175–198 [View Article]
    [Google Scholar]
  106. Zaidi N, Swinnen JV, Smans K. ATP-citrate lyase: a key player in cancer metabolism. Cancer Res 2012; 72:3709–3714 [View Article]
    [Google Scholar]
  107. Subramanian S, Sivaraman C. Bacterial citrate lyase. J Biosci 1984; 6:379–401 [View Article]
    [Google Scholar]
  108. Icard P, Lincet H. The reduced concentration of citrate in cancer cells: an indicator of cancer aggressiveness and a possible therapeutic target (vol 29, pg 47, 2016). Drug Resist Updat 2017; 30:63 [View Article] [PubMed]
    [Google Scholar]
  109. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009; 324:1076–1080 [View Article]
    [Google Scholar]
  110. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11:325–337 [View Article] [PubMed]
    [Google Scholar]
  111. Smith M, Zahnley J, Pfeifer D, Goff D. Growth and cholesterol oxidation by Mycobacterium species in Tween 80 medium. Appl Environ Microbiol 1993; 59:1425–1429 [View Article] [PubMed]
    [Google Scholar]
  112. Nesbitt NM, Yang X, Fontán P, Kolesnikova I, Smith I et al. A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect Immun 2010; 78:275–282 [View Article] [PubMed]
    [Google Scholar]
  113. Hesselink PGM, van Vliet S, de Vries H, Witholt B. Optimization of steroid side chain cleavage by Mycobacterium sp. in the presence of cyclodextrins. Enzyme Microb Technol 1989; 11:398–404 [View Article]
    [Google Scholar]
  114. Pernigoni N, Zagato E, Calcinotto A, Troiani M, Mestre RP et al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. Science 2021; 374:216–224 [View Article] [PubMed]
    [Google Scholar]
  115. Kreit J, Sampson NS. Cholesterol oxidase: physiological functions. FEBS J 2009; 276:6844–6856 [View Article] [PubMed]
    [Google Scholar]
  116. Cai C, Balk SP. Intratumoral androgen biosynthesis in prostate cancer pathogenesis and response to therapy. Endocr Relat Cancer 2011; 18:R175–82 [View Article] [PubMed]
    [Google Scholar]
  117. Snaterse G, Visser JA, Arlt W, Hofland J. Circulating steroid hormone variations throughout different stages of prostate cancer. Endocr Relat Cancer 2017; 24:R403–R420 [View Article] [PubMed]
    [Google Scholar]
  118. Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: physiological and clinical implications. Maturitas 2017; 103:45–53 [View Article] [PubMed]
    [Google Scholar]
  119. Dashnyam P, Mudududdla R, Hsieh T-J, Lin T-C, Lin H-Y et al. β-Glucuronidases of opportunistic bacteria are the major contributors to xenobiotic-induced toxicity in the gut. Sci Rep 2018; 8:16372 [View Article] [PubMed]
    [Google Scholar]
  120. Belton M, Brilha S, Manavaki R, Mauri F, Nijran K et al. Hypoxia and tissue destruction in pulmonary TB. Thorax 2016; 71:1145–1153 [View Article] [PubMed]
    [Google Scholar]
  121. Wong-Rolle A, Dong Q, Zhu Y, Divakar P, Hor JL et al. Spatial meta-transcriptomics reveal associations of intratumor bacteria burden with lung cancer cells showing a distinct oncogenic signature. J Immunother Cancer 2022; 10:e004698 [View Article] [PubMed]
    [Google Scholar]
  122. Wicks EE, Semenza GL. Hypoxia-inducible factors: cancer progression and clinical translation. J Clin Invest 2022; 132:11 [View Article] [PubMed]
    [Google Scholar]
  123. Wei R, Wong JPC, Kwok HF. Osteopontin -- a promising biomarker for cancer therapy. J Cancer 2017; 8:2173–2183 [View Article]
    [Google Scholar]
  124. Ju JA, Godet I, Ye IC, Byun J, Jayatilaka H et al. Hypoxia selectively enhances integrin α5β1 receptor expression in breast cancer to promote metastasis. Mol Cancer Res 2017; 15:723–734 [View Article]
    [Google Scholar]
  125. Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA 2008; 105:6392–6397 [View Article]
    [Google Scholar]
  126. Hildebrand D, Uhle F, Sahin D, Krauser U, Weigand MA et al. The interplay of notch signaling and STAT3 in TLR-activated human primary monocytes. Front Cell Infect Microbiol 2018; 8:241 [View Article]
    [Google Scholar]
  127. Aster JC, Pear WS, Blacklow SC. The varied roles of notch in cancer. Annu Rev Pathol 2017; 12:245–275 [View Article] [PubMed]
    [Google Scholar]
  128. Liu C, Ng S-K, Ding Y, Lin Y, Liu W et al. Meta-analysis of mucosal microbiota reveals universal microbial signatures and dysbiosis in gastric carcinogenesis. Oncogene 2022; 41:3599–3610 [View Article] [PubMed]
    [Google Scholar]
  129. Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 2019; 178:795–806 [View Article] [PubMed]
    [Google Scholar]
  130. Chen Y, Qiu X, Wang W, Li D, Wu A et al. Human papillomavirus infection and cervical intraepithelial neoplasia progression are associated with increased vaginal microbiome diversity in a Chinese cohort. BMC Infect Dis 2020; 20: [View Article]
    [Google Scholar]
  131. Mitra A, MacIntyre DA, Lee YS, Smith A, Marchesi JR et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci Rep 2015; 5:16865 [View Article]
    [Google Scholar]
  132. Eddy RJ, Weidmann MD, Sharma VP, Condeelis JS. Tumor cell invadopodia: invasive protrusions that orchestrate metastasis. Trends Cell Biol 2017; 27:595–607 [View Article] [PubMed]
    [Google Scholar]
  133. McCoy-Simandle K, Hanna SJ, Cox D. Exosomes and nanotubes: control of immune cell communication. Int J Biochem Cell Biol 2016; 71:44–54 [View Article] [PubMed]
    [Google Scholar]
  134. Onfelt B, Nedvetzki S, Benninger RKP, Purbhoo MA, Sowinski S et al. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol 2006; 177:8476–8483 [View Article] [PubMed]
    [Google Scholar]
  135. Hanna SJ, McCoy-Simandle K, Miskolci V, Guo P, Cammer M et al. The Role of Rho-GTPases and actin polymerization during macrophage tunneling nanotube biogenesis. Sci Rep 2017; 7:8547 [View Article] [PubMed]
    [Google Scholar]
  136. Chen C, Chen S, Han Z, Xie W, Zhang T et al. Patients with Helicobacter pylori-positive gastric cancer with human cytomegalovirus infection have a low tendency of advanced lymphatic metastasis in a Chinese population. Oncol Lett 2021; 21:402 [View Article] [PubMed]
    [Google Scholar]
  137. Gao S, Li S, Ma Z, Liang S, Shan T et al. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer. Infect Agents Cancer 2016; 11:3 [View Article]
    [Google Scholar]
  138. Tsay J-CJ, Wu BG, Sulaiman I, Gershner K, Schluger R et al. Lower airway dysbiosis affects lung cancer progression. Cancer Discov 2021; 11:293–307 [View Article] [PubMed]
    [Google Scholar]
  139. Brook I. Treatment of anaerobic infection. Expert Rev Anti Infect Ther 2007; 5:991–1006 [View Article] [PubMed]
    [Google Scholar]
  140. El Tekle G, Garrett WS. Bacteria in cancer initiation, promotion and progression. Nat Rev Cancer 2023; 23:600–618 [View Article] [PubMed]
    [Google Scholar]
  141. Ford AC, Yuan Y, Moayyedi P. Helicobacter pylori eradication therapy to prevent gastric cancer: systematic review and meta-analysis. Gut 2020; 69:2113–2121 [View Article] [PubMed]
    [Google Scholar]
  142. Ford AC, Yuan Y, Moayyedi P. Long-term impact of Helicobacter pylori eradication therapy on gastric cancer incidence and mortality in healthy infected individuals: a meta-analysis beyond 10 years of follow-up. Gastroenterology 2022; 163:754–756 [View Article]
    [Google Scholar]
  143. Li D, Jiang SF, Lei NY, Shah SC, Corley DA. Effect of Helicobacter pylori eradication therapy on the incidence of Noncardia gastric adenocarcinoma in a large diverse population in the United States. Gastroenterology 2023; 165:391–401 [View Article]
    [Google Scholar]
  144. Ferreri AJM, Ponzoni M, Guidoboni M, Resti AG, Politi LS et al. Bacteria-eradicating therapy with doxycycline in ocular adnexal MALT lymphoma: a multicenter prospective trial. J Natl Cancer Inst 2006; 98:1375–1382 [View Article] [PubMed]
    [Google Scholar]
  145. Mikasa K, Sawaki M, Kita E, Hamada K, Teramoto S et al. Significant survival benefit to patients with advanced non-small-cell lung cancer from treatment with clarithromycin. Chemotherapy 1997; 43:288–296 [View Article] [PubMed]
    [Google Scholar]
  146. Brahimi SE-H, Khelaifia S, Raoult D, Moal V. Varibaculum massiliense” sp. nov., a new bacterial species isolated from human urine. New Microbes New Infect 2016; 13:75–76 [View Article] [PubMed]
    [Google Scholar]
  147. Hrbáček J, Tláskal V, Čermák P, Hanáček V, Zachoval R. Bladder cancer is associated with decreased urinary microbiota diversity and alterations in microbial community composition. Urol Oncol 2023; 41:107 [View Article] [PubMed]
    [Google Scholar]
  148. Gong H, Shi Y, Zhou X, Wu C, Cao P et al. Microbiota in the throat and risk factors for laryngeal carcinoma. Appl Environ Microbiol 2014; 80:7356–7363 [View Article] [PubMed]
    [Google Scholar]
  149. Li Y, Tan X, Zhao X, Xu Z, Dai W et al. Composition and function of oral microbiota between gingival squamous cell carcinoma and periodontitis. Oral Oncol 2020; 107:104710 [View Article] [PubMed]
    [Google Scholar]
  150. Nagy KN, Sonkodi I, Szöke I, Nagy E, Newman HN. The microflora associated with human oral carcinomas. Oral Oncol 1998; 34:304–308 [PubMed]
    [Google Scholar]
  151. Bolz J, Dosá E, Schubert J, Eckert AW. Bacterial colonization of microbial biofilms in oral squamous cell carcinoma. Clin Oral Investig 2014; 18:409–414 [View Article] [PubMed]
    [Google Scholar]
  152. Yang L, Lu X, Nossa CW, Francois F, Peek RM et al. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology 2009; 137:588–597 [View Article]
    [Google Scholar]
  153. Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 2011; 6:e16393 [View Article] [PubMed]
    [Google Scholar]
  154. Prizment AE, Staley C, Onyeaghala GC, Vivek S, Thyagarajan B et al. Randomised clinical study: oral aspirin 325 mg daily vs placebo alters gut microbial composition and bacterial taxa associated with colorectal cancer risk. Aliment Pharmacol Ther 2020; 52:976–987 [View Article] [PubMed]
    [Google Scholar]
  155. Wang Q, Ye J, Fang D, Lv L, Wu W et al. Multi-omic profiling reveals associations between the gut mucosal microbiome, the metabolome, and host DNA methylation associated gene expression in patients with colorectal cancer. BMC Microbiol 2020; 20:83 [View Article] [PubMed]
    [Google Scholar]
  156. Zorron Cheng Tao Pu L, Yamamoto K, Honda T, Nakamura M, Yamamura T et al. Microbiota profile is different for early and invasive colorectal cancer and is consistent throughout the colon. J Gastroenterol Hepatol 2020; 35:433–437 [View Article] [PubMed]
    [Google Scholar]
  157. Du X, Li Q, Tang Z, Yan L, Zhang L et al. Alterations of the gut microbiome and fecal metabolome in colorectal cancer: implication of intestinal metabolism for tumorigenesis. Front Physiol 2022; 13:854545 [View Article]
    [Google Scholar]
  158. Banerjee S, Tian T, Wei Z, Shih N, Feldman MD et al. Distinct microbial signatures associated with different breast cancer types. Front Microbiol 2018; 9:951 [View Article] [PubMed]
    [Google Scholar]
  159. Tsementzi D, Pena-Gonzalez A, Bai J, Hu Y-J, Patel P et al. Comparison of vaginal microbiota in gynecologic cancer patients pre- and post-radiation therapy and healthy women. Cancer Med 2020; 9:3714–3724 [View Article] [PubMed]
    [Google Scholar]
  160. Coker OO, Dai Z, Nie Y, Zhao G, Cao L et al. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut 2018; 67:1024–1032 [View Article] [PubMed]
    [Google Scholar]
  161. Gunathilake MN, Lee J, Choi IJ, Kim Y-I, Ahn Y et al. Association between the relative abundance of gastric microbiota and the risk of gastric cancer: a case-control study. Sci Rep 2019; 9:13589 [View Article] [PubMed]
    [Google Scholar]
  162. Dai D, Yang Y, Yu J, Dang T, Qin W et al. Interactions between gastric microbiota and metabolites in gastric cancer. Cell Death Dis 2021; 12:1104 [View Article] [PubMed]
    [Google Scholar]
  163. Tsay J-CJ, Wu BG, Badri MH, Clemente JC, Shen N et al. Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. Am J Respir Crit Care Med 2018; 198:1188–1198 [View Article] [PubMed]
    [Google Scholar]
  164. Kim O-H, Choi B-Y, Kim DK, Kim NH, Rho JK et al. The microbiome of lung cancer tissue and its association with pathological and clinical parameters. Am J Cancer Res 2022; 12:2350–2362 [PubMed]
    [Google Scholar]
  165. Hussein AA, Elsayed AS, Durrani M, Jing Z, Iqbal U et al. Investigating the association between the urinary microbiome and bladder cancer: an exploratory study. Urol Oncol 2021; 39:370 [View Article] [PubMed]
    [Google Scholar]
  166. Liu X, Shao L, Liu X, Ji F, Mei Y et al. Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer. EBioMedicine 2019; 40:336–348 [View Article]
    [Google Scholar]
  167. Lam KC, Vyshenska D, Hu J, Rodrigues RR, Nilsen A et al. Transkingdom network reveals bacterial players associated with cervical cancer gene expression program. PeerJ 2018; 6:e5590 [View Article]
    [Google Scholar]
  168. Mikamo H, Izumi K, Ito K, Watanabe K, Ueno K et al. Internal bacterial flora of solid uterine cervical cancer. Kansenshogaku Zasshi 1993; 67:1057–1061 [View Article] [PubMed]
    [Google Scholar]
  169. Rai AK, Panda M, Das AK, Rahman T, Das R et al. Dysbiosis of salivary microbiome and cytokines influence oral squamous cell carcinoma through inflammation. Arch Microbiol 2021; 203:137–152 [View Article] [PubMed]
    [Google Scholar]
  170. Kalaora S, Nagler A, Nejman D, Alon M, Barbolin C et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature 2021; 592:138–143 [View Article] [PubMed]
    [Google Scholar]
  171. Peters BA, Wu J, Pei Z, Yang L, Purdue MP et al. Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res 2017; 77:6777–6787 [View Article] [PubMed]
    [Google Scholar]
  172. Ai D, Pan H, Han R, Li X, Liu G et al. Using decision tree aggregation with random forest model to identify gut microbes associated with colorectal cancer. Genes 2019; 10:112 [View Article] [PubMed]
    [Google Scholar]
  173. Katz J, Onate MD, Pauley KM, Bhattacharyya I, Cha S. Presence of Porphyromonas gingivalis in gingival squamous cell carcinoma. Int J Oral Sci 2011; 3:209–215 [View Article] [PubMed]
    [Google Scholar]
  174. Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 2018; 67:120–127 [View Article] [PubMed]
    [Google Scholar]
  175. Walther-António MRS, Chen J, Multinu F, Hokenstad A, Distad TJ et al. Potential contribution of the uterine microbiome in the development of endometrial cancer. Genome Med 2016; 8:122 [View Article] [PubMed]
    [Google Scholar]
  176. Shilnikova II, Dmitrieva NV. Evaluation of antibiotic susceptibility of bacteroides, prevotella and Fusobacterium species isolated from patients of the N. N. Blokhin Cancer Research Center, Moscow, Russia. Anaerobe 2015; 31:15–18 [View Article]
    [Google Scholar]
  177. Sfanos KS, Sauvageot J, Fedor HL, Dick JD, De Marzo AM et al. A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 2008; 68:306–320 [View Article] [PubMed]
    [Google Scholar]
  178. Justesen US, Nielsen SL, Jensen TG, Dessau RB, Møller JK et al. Bacteremia with anaerobic bacteria and association with colorectal cancer: a population-based cohort study. Clin Infect Dis 2022; 75:1747–1753 [View Article] [PubMed]
    [Google Scholar]
  179. Kartal E, Schmidt TSB, Molina-Montes E, Rodríguez-Perales S, Wirbel J et al. A faecal microbiota signature with high specificity for pancreatic cancer. Gut 2022; 71:1359–1372 [View Article] [PubMed]
    [Google Scholar]
  180. Park SS, Kim B, Kim MJ, Roh SJ, Park SC et al. The effect of curative resection on fecal microbiota in patients with colorectal cancer: a prospective pilot study. Ann Surg Treat Res 2020; 99:44–51 [View Article] [PubMed]
    [Google Scholar]
  181. Cobo F. Lymphocele infection due to Peptoniphilus harei after radical prostatectomy. Med Mal Infect 2018; 48:154–155 [View Article] [PubMed]
    [Google Scholar]
  182. Wu P, Zhang G, Zhao J, Chen J, Chen Y et al. Profiling the urinary microbiota in male patients with bladder cancer in China. Front Cell Infect Microbiol 2018; 8:167 [View Article] [PubMed]
    [Google Scholar]
  183. Gao X, Miao R, Zhu Y, Lin C, Yang X et al. A new insight into acute lymphoblastic leukemia in children: influences of changed intestinal microfloras. BMC Pediatr 2020; 20:290 [View Article] [PubMed]
    [Google Scholar]
  184. Mira-Pascual L, Cabrera-Rubio R, Ocon S, Costales P, Parra A et al. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J Gastroenterol 2015; 50:167–179 [View Article] [PubMed]
    [Google Scholar]
  185. Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2016; 65:1973–1980 [View Article] [PubMed]
    [Google Scholar]
  186. Flanagan L, Schmid J, Ebert M, Soucek P, Kunicka T et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis 2014; 33:1381–1390 [View Article] [PubMed]
    [Google Scholar]
  187. Warren RL, Freeman DJ, Pleasance S, Watson P, Moore RA et al. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome 2013; 1:16 [View Article] [PubMed]
    [Google Scholar]
  188. Audirac-Chalifour A, Torres-Poveda K, Bahena-Román M, Téllez-Sosa J, Martínez-Barnetche J et al. Cervical microbiome and cytokine profile at various stages of cervical cancer: a pilot study. PLoS One 2016; 11:e0153274 [View Article] [PubMed]
    [Google Scholar]
  189. Hieken TJ, Chen J, Hoskin TL, Walther-Antonio M, Johnson S et al. The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci Rep 2016; 6:30751 [View Article] [PubMed]
    [Google Scholar]
  190. Al-Hebshi NN, Nasher AT, Maryoud MY, Homeida HE, Chen T et al. Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci Rep 2017; 7:1834 [View Article] [PubMed]
    [Google Scholar]
  191. Zhao H, Chu M, Huang Z, Yang X, Ran S et al. Variations in oral microbiota associated with oral cancer. Sci Rep 2017; 7: [View Article]
    [Google Scholar]
  192. Lee JB, Kim K-A, Cho HY, Kim D, Kim WK et al. Association between Fusobacterium nucleatum and patient prognosis in metastatic colon cancer. Sci Rep 2021; 11:20263 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001817
Loading
/content/journal/jmm/10.1099/jmm.0.001817
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error