1887

Abstract

colonizing the lung of cystic fibrosis patients is responsible for a decline in health and poor prognosis for these patients. Once established, growth of in microcolonies makes it very difficult to eradicate the organisms by antimicrobial treatment. An artificial sputum medium was developed to mimic growth of in the cystic fibrosis lung habitat and it was found that the organisms grew in tight microcolonies attached to sputum components. Several genes, such as , and but not , were required for tight microcolony formation. Among the sputum components, amino acids, lecithin, DNA, salt and low iron were required for tight microcolony formation. Amino acids were also shown to be responsible for various other cystic-fibrosis-specific phenotypes of , such as diversification of colony morphology, alterations in LPS structure and hyperexpression of OprF. Since the amino acid content of sputum is elevated in severe lung disease, it is suggested that the tight microcolony biofilm is maintained in these conditions and that they contribute to the vicious cycle of disease severity and failure to eradicate the organism. Thus, growth of in artificial sputum medium is an appropriate model of chronic lung colonization and may be useful for evaluating therapeutic procedures and studying antibiotic-resistance mechanisms.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.45969-0
2005-07-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/54/7/JM540708.html?itemId=/content/journal/jmm/10.1099/jmm.0.45969-0&mimeType=html&fmt=ahah

References

  1. Arora, S. K., Ritchings, B. W., Almira, E. C., Lory, S. & Ramphal, R. ( 1998;). The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion. Infect Immun 66, 1000–1007.
    [Google Scholar]
  2. Baltimore, R. S., Christie, C. D. C. & Walker Smith, G. J. ( 1989;). Immunohistopathologic localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Am Rev Respir Dis 140, 1650–1661.[CrossRef]
    [Google Scholar]
  3. Barth, A. L. & Pitt, T. L. ( 1996;). The high amino-acid content of sputum from cystic fibrosis patients promotes growth of auxotrophic Pseudomonas aeruginosa. J Med Microbiol 45, 110–119.[CrossRef]
    [Google Scholar]
  4. Beloin, C., Valle, J., Latour-Lambert, P. & 8 other authors ( 2004;). Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51, 659–674.
    [Google Scholar]
  5. Beveridge, T. J., Makin, S. A., Kadurugamuwa, J. L. & Li, Z. ( 1997;). Interactions between biofilms and the environment. FEMS Microbiol Rev 20, 291–303.[CrossRef]
    [Google Scholar]
  6. Boddicker, J. D., Ledeboer, N. A., Jagnow, J., Jones, B. D. & Clegg, S. ( 2002;). Differential binding to and biofilm formation on, HEp-2 cells by Salmonella enterica serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster. Mol Microbiol 45, 1255–1265.[CrossRef]
    [Google Scholar]
  7. Christensen, B. B., Sternberg, C., Andersen, J. B., Palmer, R. J. Jr, Nielsen, A. T., Givskov, M. & Molin, S. ( 1999;). Molecular tools for study of biofilm physiology. Methods Enzymol 310, 20–42.
    [Google Scholar]
  8. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. ( 1995;). Microbial biofilms. Annu Rev Microbiol 49, 711–745.[CrossRef]
    [Google Scholar]
  9. Davey, M. E., Caiazza, N. C. & O'Toole, G. A. ( 2003;). Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185, 1027–1036.[CrossRef]
    [Google Scholar]
  10. de Kievit, T. R. & Lam, J. S. ( 1994;). Monoclonal antibodies that distinguish inner core, outer core, and lipid A regions of Pseudomonas aeruginosa lipopolysaccharide. J Bacteriol 176, 7129–7139.
    [Google Scholar]
  11. Diggle, S. P., Winzer, K., Lazdunski, A., Williams, P. & Camara, M. ( 2002;). Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol 184, 2576–2586.[CrossRef]
    [Google Scholar]
  12. Ernst, R. K., Yi, E. C., Guo, L., Lim, K. B., Burns, J. L., Hackett, M. & Miller, S. I. ( 1999;). Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 286, 1561–1565.[CrossRef]
    [Google Scholar]
  13. Feldman, M., Bryan, R., Rajan, S., Scheffler, L., Brunnert, S., Tang, H. & Prince, A. ( 1998;). Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect Immun 66, 43–51.
    [Google Scholar]
  14. Ghani, M. & Soothill, J. S. ( 1997;). Ceftazidime, gentamicin, and rifampicin, in combination, kill biofilms of mucoid Pseudomonas aeruginosa. Can J Microbiol 43, 999–1004.[CrossRef]
    [Google Scholar]
  15. Gibson, R. L., Burns, J. L. & Ramsey, B. W. ( 2003;). Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168, 918–951.[CrossRef]
    [Google Scholar]
  16. Gorg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R. & Weiss, W. ( 2000;). The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 1037–1053.[CrossRef]
    [Google Scholar]
  17. Govan, J. R. ( 1975;). Mucoid strains of Pseudomonas aeruginosa: the influence of culture medium on the stability of mucus production. J Med Microbiol 8, 513–522.[CrossRef]
    [Google Scholar]
  18. Hancock, R. E., Mutharia, L. M., Chan, L., Darveau, R. P., Speert, D. P. & Pier, G. B. ( 1983;). Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect Immun 42, 170–177.
    [Google Scholar]
  19. Head, N. E. & Yu, H. ( 2004;). Cross-sectional analysis of clinical and environmental isolates of Pseudomonas aeruginosa: biofilm formation, virulence, and genome diversity. Infect Immun 72, 133–144.[CrossRef]
    [Google Scholar]
  20. Hitchcock, P. J. & Brown, T. M. ( 1983;). Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol 154, 269–277.
    [Google Scholar]
  21. Kilbourn, J. P. ( 1978;). Bacterial content and ionic composition of sputum in cystic fibrosis. Lancet 1, 334. 334.
    [Google Scholar]
  22. Kresse, A. U., Dinesh, S. D., Larbig, K. & Römling, U. ( 2003;). Impact of large chromosomal inversions on the adaptation and evolution of Pseudomonas aeruginosa chronically colonizing cystic fibrosis lungs. Mol Microbiol 47, 145–158.
    [Google Scholar]
  23. Lam, J., Chan, R., Lam, K. & Costerton, J. W. ( 1980;). Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun 28, 546–556.
    [Google Scholar]
  24. Lesse, A. J., Campagnari, A. A., Bittner, W. E. & Apicella, M. A. ( 1990;). Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Immunol Methods 126, 109–117.[CrossRef]
    [Google Scholar]
  25. Lünsdorf, H., Strompl, C., Osborn, A. M., Bennasar, A., Moore, E. R., Abraham, W. R. & Timmis, K. N. ( 2001;). Approach to analyze interactions of microorganisms, hydrophobic substrates, and soil colloids leading to formation of composite biofilms, and to study initial events in microbiogeological processes. Methods Enzymol 336, 317–331.
    [Google Scholar]
  26. Mahenthiralingam, E., Campbell, M. E. & Speert, D. P. ( 1994;). Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 62, 596–605.
    [Google Scholar]
  27. Middleton, B., Rodgers, H. C., Camara, M., Knox, A. J., Williams, P. & Hardman, A. ( 2002;). Direct detection of N-acylhomoserine lactones in cystic fibrosis sputum. FEMS Microbiol Lett 207, 1–7.[CrossRef]
    [Google Scholar]
  28. Ohman, D. E. & Chakrabarty, A. M. ( 1982;). Utilization of human respiratory secretions by mucoid Pseudomonas aeruginosa of cystic fibrosis origin. Infect Immun 37, 662–669.
    [Google Scholar]
  29. O'Toole, G. A. & Kolter, R. ( 1998;). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30, 295–304.[CrossRef]
    [Google Scholar]
  30. Ramsey, B. W., Pepe, M. S., Quan, J. M. & 9 other authors ( 1999;). Intermittent administration of inhaled tobramycin in patients with cystic fibrosis.Cystic Fibrosis Inhaled Tobramycin Study Group. N Engl J Med 340, 23–30.[CrossRef]
    [Google Scholar]
  31. Römling, U., Fiedler, B., Bosshammer, J., Grothues, D., Greipel, J., von der Hardt, H. & Tummler, B. ( 1994a;). Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis. J Infect Dis 170, 1616–1621.[CrossRef]
    [Google Scholar]
  32. Römling, U., Wingender, J., Muller, H. & Tummler, B. ( 1994b;). A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl Environ Microbiol 60, 1734–1738.
    [Google Scholar]
  33. Römling, U., Schmidt, K. D. & Tümmler, B. ( 1997;). Large genome rearrangements discovered by the detailed analysis of 21 Pseudomonas aeruginosa clone C isolates found in environment and disease habitats. J Mol Biol 271, 386–404.[CrossRef]
    [Google Scholar]
  34. Römling, U., Sierralta, W. D., Eriksson, K. & Normark, S. ( 1998;). Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol 28, 249–264.[CrossRef]
    [Google Scholar]
  35. Sahu, S. & Lynn, W. S. ( 1978;). Lipid composition of sputum from patients with asthma and patients with cystic fibrosis. Inflammation 3, 27–36.[CrossRef]
    [Google Scholar]
  36. Singh, P. K., Schaefer, A. L., Parsek, M. R., Moninger, T. O., Welsh, M. J. & Greenberg, E. P. ( 2000;). Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407, 762–764.[CrossRef]
    [Google Scholar]
  37. Smith, A. L., Redding, G., Doershuk, C. & 14 other authors ( 1988;). Sputum changes associated with therapy for endobronchial exacerbation in cystic fibrosis. J Pediatr 112, 547–554.[CrossRef]
    [Google Scholar]
  38. Smith, A. L., Fiel, S. B., Mayer-Hamblett, N., Ramsey, B. & Burns, J. L. ( 2003;). Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration: lack of association in cystic fibrosis. Chest 123, 1495–1502.[CrossRef]
    [Google Scholar]
  39. Solano, C., Garcia, B., Valle, J., Berasain, C., Ghigo, J. M., Gamazo, C. & Lasa, I. ( 2002;). Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43, 793–808.[CrossRef]
    [Google Scholar]
  40. Thomas, S. R., Ray, A., Hodson, M. E. & Pitt, T. L. ( 2000;). Increased sputum amino acid concentrations and auxotrophy of Pseudomonas aeruginosa in severe cystic fibrosis lung disease. Thorax 55, 795–797.[CrossRef]
    [Google Scholar]
  41. Tsai, C. M. & Frasch, C. E. ( 1982;). A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119, 115–119.[CrossRef]
    [Google Scholar]
  42. Wang, J., Lory, S., Ramphal, R. & Jin, S. ( 1996;). Isolation and characterization of Pseudomonas aeruginosa genes inducible by respiratory mucus derived from cystic fibrosis patients. Mol Microbiol 22, 1005–1012.[CrossRef]
    [Google Scholar]
  43. Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C. & Mattick, J. S. ( 2002;). Extracellular DNA required for bacterial biofilm formation. Science 295, 1487. 1487.[CrossRef]
    [Google Scholar]
  44. Woolwine, S. C. & Wozniak, D. J. ( 1999;). Identification of an Escherichia coli pepA homolog and its involvement in suppression of the algB phenotype in mucoid Pseudomonas aeruginosa. J Bacteriol 181, 107–116.
    [Google Scholar]
  45. Worlitzsch, D., Tarran, R., Ulrich, M. & 12 other authors ( 2002;). Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109, 317–325.[CrossRef]
    [Google Scholar]
  46. Wozniak, D. J., Wyckoff, T. J., Starkey, M., Keyser, R., Azadi, P., O'Toole, G. A. & Parsek, M. R. ( 2003;). Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 100, 7907–7912.[CrossRef]
    [Google Scholar]
  47. Wu, H., Song, Z., Givskov, M., Doring, G., Worlitzsch, D., Mathee, K., Rygaard, J. & Hoiby, N. ( 2001;). Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiology 147, 1105–1113.
    [Google Scholar]
  48. Yakimov, M. M., Golyshin, P. N., Lang, S., Moore, E. R., Abraham, W. R., Lünsdorf, H. & Timmis, K. N. ( 1998;). Alcanivorax borkumensis gen.nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48, 339–348.[CrossRef]
    [Google Scholar]
  49. Yoon, S. S., Hennigan, R. F., Hilliard, G. M. & 17 other authors ( 2002;). Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 3, 593–603.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.45969-0
Loading
/content/journal/jmm/10.1099/jmm.0.45969-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error