1887

Abstract

Ticks are the most important vectors of human pathogens, leading to increased public health burdens worldwide. Tick-borne pathogens include viruses (e.g. tick-borne encephalitis and Powassan); bacteria, such as the causative agents of Lyme disease, spotted fever rickettsiosis and human anaplasmosis; and malaria-like protozoan parasites causing babesiosis. Tick-borne diseases are emerging due to the geographical expansion of their tick vectors, especially in the northern hemisphere. Two examples of this phenomenon are and , which have expanded their ranges in the USA in recent decades and are responsible for the continuous emergence of Lyme disease and human ehrlichiosis, respectively. This phenomenon is also occurring worldwide and is reflected by the increasing number of tick-borne encephalitis and haemorrhagic fever cases in Europe and Asia. In this review, we provide a concise synopsis of the most medically important tick-borne pathogen worldwide, with a particular emphasis on emerging public health threats.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001206
2020-06-01
2020-09-28
Loading full text...

Full text loading...

References

  1. Rosenberg R, Lindsey NP, Fischer M, Gregory CJ, Hinckley AF et al. Vital Signs : Trends in Reported Vectorborne Disease Cases — United States and Territories, 2004–2016. MMWR Morb Mortal Wkly Rep 2018; 67:496–501
    [Google Scholar]
  2. Nelson CA, Saha S, Kugeler KJ, Delorey MJ, Shankar MB et al. Incidence of Clinician-Diagnosed Lyme disease, United States, 2005-2010. Emerg Infect Dis 2015; 21:1625–1631
    [Google Scholar]
  3. Hinckley AF, Connally NP, Meek JI, Johnson BJ, Kemperman MM et al. Lyme disease testing by large commercial laboratories in the United States. Clin Infect Dis 2014; 59:676–681
    [Google Scholar]
  4. Egizi A, Fefferman NH, Jordan RA. Relative risk for ehrlichiosis and Lyme disease in an area where vectors for both are sympatric, new Jersey, USA. Emerg Infect Dis 2017; 23:1080–6059
    [Google Scholar]
  5. Eisen RJ, Kugeler KJ, Eisen L, Beard CB, Paddock CD. Tick-Borne zoonoses in the United States: persistent and emerging threats to human health. ILARJ 2017; 58:319–335
    [Google Scholar]
  6. Zhang X, Meltzer MI, Peña CA, Hopkins AB, Wroth L et al. Economic impact of Lyme disease. Emerg Infect Dis 2006; 12:653–660
    [Google Scholar]
  7. Adrion ER, Aucott J, Lemke KW, Weiner JP. Health care costs, utilization and patterns of care following Lyme disease. PLoS ONE 2015; 10:e0116767
    [Google Scholar]
  8. Johnson L, Aylward A, Stricker RB. Healthcare access and burden of care for patients with Lyme disease: a large United States survey. Health Policy 2011; 102:64–71
    [Google Scholar]
  9. Donohoe H, Pennington-Gray L, Omodior O. Lyme disease: current issues, implications, and recommendations for tourism management. Tour Manag 2015; 46:408–418
    [Google Scholar]
  10. Mac S, da Silva SR, Sander B. The economic burden of Lyme disease and the cost-effectiveness of Lyme disease interventions: a scoping review. Plos One 2019; 14:e0210280
    [Google Scholar]
  11. Estrada-Peña A, Salman M. Current limitations in the control and spread of ticks that affect livestock: a review. Agriculture 2013; 3:221–235
    [Google Scholar]
  12. de Castro JJ, James AD, Minjauw B, Di Giulio GU, Permin A et al. Long-Term studies on the economic impact of ticks on Sanga cattle in Zambia. Exp Appl Acarol 1997; 21:3–19
    [Google Scholar]
  13. Kivaria FM. Estimated direct economic costs associated with tick-borne diseases on cattle in Tanzania. Trop Anim Health Prod 2006; 38:291–299
    [Google Scholar]
  14. Rainey T, Occi JL, Robbins RG, Egizi A. Discovery of Haemaphysalis longicornis (Ixodida: Ixodidae) Parasitizing a Sheep in New Jersey, United States. J Med Entomol 2018; 55:757–759
    [Google Scholar]
  15. Rochlin I. Modeling the Asian Longhorned tick (Acari: Ixodidae) suitable habitat in North America. J Med Entomol 2019; 56:384–391
    [Google Scholar]
  16. Fujisaki K, Kawazu S, Kamio T. The taxonomy of the bovine Theileria spp. Parasitol Today 1994; 10:31–33
    [Google Scholar]
  17. Hammer JF, Emery D, Bogema DR, Jenkins C. Detection of Theileria orientalis genotypes in Haemaphysalis longicornis ticks from southern Australia. Parasit Vectors 2015; 8:229
    [Google Scholar]
  18. Oakes VJ, Yabsley MJ, Schwartz D, LeRoith T, Bissett C et al. Theileria orientalis Ikeda Genotype in Cattle, Virginia, USA. Emerg Infect Dis 2019; 25:1653–1659
    [Google Scholar]
  19. Paddock CD, Branch MRZ. Changing Paradigms for Tick-Borne Diseases in the Americas. Global Health Impacts of Vector-Borne Diseases: Workshop Summary National Academies Press; 2016
    [Google Scholar]
  20. Parola P, Raoult D. Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis 2001; 32:897–928
    [Google Scholar]
  21. Socolovschi C, Mediannikov O, Raoult D, Parola P. The relationship between spotted fever group Rickettsiae and Ixodid ticks. Vet Res 2009; 40:34
    [Google Scholar]
  22. McCall PJ, Hume JCC, Motshegwa K, Pignatelli P, Talbert A et al. Does tick-borne relapsing fever have an animal reservoir in East Africa?. Vector Borne Zoonotic Dis 2007; 7:659–666 [CrossRef][PubMed]
    [Google Scholar]
  23. Sonenshine DE, RMichael R. Biology of Ticks, 2nd ed. Oxford University Press; 2014
    [Google Scholar]
  24. Vial L. Biological and ecological characteristics of soft ticks (Ixodida: Argasidae) and their impact for predicting tick and associated disease distribution. Parasite 2009; 16:191–202
    [Google Scholar]
  25. Sonenshine DE. The biology of tick vectors of human disease. in; 2005
  26. Uspensky I. Argasid (Soft) Ticks (Acari: Ixodida: Argasidae). Encyclopedia of Entomology Dordrecht: Springer Netherlands; 2005 pp 195–198
    [Google Scholar]
  27. Eisen L. Pathogen transmission in relation to duration of attachment by Ixodes scapularis ticks. Vol. 9, Ticks and Tick-borne Diseases 9 Urban & Fischer; 2018 pp 535–542
    [Google Scholar]
  28. Dennis DT, Piesman JF. Overview of tick-borne infections of humans. In Goodman JL, Dennis DT, Sonenshine DE. (editors) Tick-Borne Diseases of Humans 401 Washington, DC: ASM Press; 2005
    [Google Scholar]
  29. Vannier E, Krause PJ. Human babesiosis. N Engl J Med 2012; 366:2397–2407
    [Google Scholar]
  30. Halperin JJ. Lyme Disease: An Evidence-Based Approach, 2nd edn. Wallingford, UK: CABI; 2018
    [Google Scholar]
  31. Hermance ME, Thangamani S. Powassan virus: an emerging arbovirus of public health concern in North America. Vector-Borne Zoonotic Dis 2017; 17:453–462
    [Google Scholar]
  32. Wormser GP, Dattwyler RJ, Shapiro ED, Halperin JJ, Steere AC et al. The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the infectious diseases Society of America. Clin Infect Dis 2006; 43:1089–1134
    [Google Scholar]
  33. Sanchez-Vicente S, Tagliafierro T, Coleman JL, Benach JL, Tokarz R. Polymicrobial nature of tick-borne diseases. mBio 2019; 10:
    [Google Scholar]
  34. Falco RC, Daniels TJ, Vinci V, McKenna D, Scavarda C et al. Assessment of Duration of Tick Feeding by the Scutal Index Reduces Need for Antibiotic Prophylaxis After Ixodes scapularis Tick Bites. Clin Infect Dis 2018; 67:614–616
    [Google Scholar]
  35. Nuttall PA, Labuda M. Tick-borne encephalitis. In Goodman JL, Dennis DT, Sonenshine DE. (editors) Tick-Borne Diseases of Humans Washington, D.C: ASM Press; 2005
    [Google Scholar]
  36. Heinz FX, Holzmann H. Tick-borne encephalitis. In Service MW. editor The Encyclopedia of Arthropod-Transmitted Infections Wallingford, UK: CABI Publishing; 2001 pp 507–512
    [Google Scholar]
  37. Mansfield KL, Jizhou L, Phipps LP, Johnson N. Emerging tick-borne viruses in the twenty-first century. Front Cell Infect Microbiol 2017; 7:298
    [Google Scholar]
  38. Gavrilovskaya IN. Omsk haemorrhagic fever. In Service MW. editor The Encyclopedia of Arthropod-Transmitted Infections Wallingford, UK: CABI Publishing; 2001 pp 370–374
    [Google Scholar]
  39. Brown RN, Lane RS, Dennis DT. Geographic distributions of tick-borne diseases and their vectors. In Goodman JL, Dennis DT, Sonenshine DE. (editors) Tick-Borne Diseases of Humans Washington, D.C: ASM Press; 2005 pp 363–391
    [Google Scholar]
  40. Hartemink N, Takken W. Trends in tick population dynamics and pathogen transmission in emerging tick-borne pathogens in Europe: an introduction. Exp Appl Acarol 2016; 68:269–278
    [Google Scholar]
  41. Ebel GD. Update on Powassan virus: emergence of a North American tick-borne flavivirus. Annu Rev Entomol 2010; 55:95–110
    [Google Scholar]
  42. Deardorff ER, Nofchissey RA, Cook JA, Hope AG, Tsvetkova A et al. Powassan virus in mammals, Alaska and new Mexico, U.S.A., and Russia, 2004-2007. Emerg Infect Dis 2013; 19:2012–2016
    [Google Scholar]
  43. Birge J, Sonnesyn S, Encephalitis PV, Minnesota USA. Emerg Infect Dis 2012; 18:1669–1671
    [Google Scholar]
  44. Shah SZ, Jabbar B, Ahmed N, Rehman A, Nasir H et al. Epidemiology, pathogenesis, and control of a tick-borne disease- Kyasanur forest disease: current status and future directions. Front Cell Infect Microbiol 2018; 8:149
    [Google Scholar]
  45. Kholodilov I, Belova O, Burenkova L, Korotkov Y, Romanova L et al. Ixodid ticks and tick-borne encephalitis virus prevalence in the South Asian part of Russia (Republic of Tuva).. Ticks Tick-Borne Dis. 2019
    [Google Scholar]
  46. Hoogstraal H. The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol 1979; 15:307–417
    [Google Scholar]
  47. Nuttall PA. Crimean-Congo haemorrhagic fever. In Service MW. editor The encyclopedia of arthropod-transmitted infections Wallingford, UK: CABI Publishing; 2001 pp 126–132
    [Google Scholar]
  48. Whitehouse CA. Crimean-Congo hemorrhagic fever. Antiviral Res 2004; 64:145–160
    [Google Scholar]
  49. Naderi H, Sheybani F, Bojdi A, Khosravi N, Mostafavi I. Fatal nosocomial spread of Crimean-Congo hemorrhagic fever with very short incubation period. Am J Trop Med Hyg 2013; 88:469–471
    [Google Scholar]
  50. Burt FJ, Swanepoel R. Crimean-Congo Hemorrhagic Fever.. Tick-Borne Diseases of Humans American Society of Microbiology; 2005 pp 164–175
    [Google Scholar]
  51. Whitehouse CA. Crimean–Congo hemorrhagic fever. Antiviral Res 2004; 64:145–160
    [Google Scholar]
  52. Liu K, Zhou H, Sun R-X, Yao H-W, Li Y et al. A national assessment of the epidemiology of severe fever with thrombocytopenia syndrome, China. Sci Rep 2015; 5:9679
    [Google Scholar]
  53. Yu X-J, Liang M-F, Zhang S-Y, Liu Y, Li J-D et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med 2011; 364:1523–1532 [CrossRef][PubMed]
    [Google Scholar]
  54. Luo L-M, Zhao L, Wen H-L, Zhang Z-T, Liu J-W et al. Haemaphysalis longicornis ticks as reservoir and vector of severe fever with thrombocytopenia syndrome virus in China. Emerg Infect Dis 2015; 21:1770
    [Google Scholar]
  55. Hoogstraal H, Roberts FHS, Kohls GM, Tipton VJ. Review of Haemaphysalis (Kaiseriana) longicornis Neumann (resurrected) of Australia, New Zealand, New Caledonia, Fiji, Japan, Korea, and northeastern China and USSR, and its parthenogenetic and bisexual populations (Ixodoidea, Ixodidae). J Parasitol 19681197–1213
    [Google Scholar]
  56. McMullan LK, Folk SM, Kelly AJ, MacNeil A, Goldsmith CS et al. A new phlebovirus associated with severe febrile illness in Missouri. N Engl J Med 2012; 367:834–841
    [Google Scholar]
  57. Pastula DM, Turabelidze G, Yates KF, Jones TF, Lambert AJ et al. Notes from the field: Heartland virus disease-United states, 2012-2013. MMWR Morb Mortal Wkly Rep 2014; 63:270–271
    [Google Scholar]
  58. Muehlenbachs A, Fata CR, Lambert AJ, Paddock CD, Velez JO et al. Heartland virus–associated death in Tennessee. Clin Infect Dis 2014; 59:845–850
    [Google Scholar]
  59. Fill M-MA, Compton ML, McDonald EC, Moncayo AC, Dunn JR et al. Novel clinical and pathologic findings in a Heartland virus–associated death. Clin Infect Dis 2017; 64:510–512
    [Google Scholar]
  60. Savage HM, Godsey MS, Lambert A, Panella NA, Burkhalter KL et al. First detection of heartland virus (Bunyaviridae: Phlebovirus) from field collected arthropods. Am J Trop Med Hyg 2013; 89:445–452
    [Google Scholar]
  61. Godsey MS, Savage HM, Burkhalter KL, Bosco-Lauth AM, Delorey MJ. Transmission of Heartland Virus (Bunyaviridae: Phlebovirus) by Experimentally Infected Amblyomma americanum (Acari: Ixodidae). J Med Entomol 2016; 53:1226–1233
    [Google Scholar]
  62. Matsuno K, Weisend C, Travassos da Rosa APA, Anzick SL, Dahlstrom E et al. Characterization of the Bhanja Serogroup Viruses (Bunyaviridae): a Novel Species of the Genus Phlebovirus and Its Relationship with Other Emerging Tick-Borne Phleboviruses. J Virol 2013; 87:3719–3728
    [Google Scholar]
  63. Calisher CH, Goodpasture HC. Human infection with Bhanja virus. Am J Trop Med Hyg 1975; 24:1040–1042
    [Google Scholar]
  64. Savage HM, Burkhalter KL, Godsey MS, Panella NA, Ashley DC et al. Bourbon virus in field-collected ticks, Missouri, USA. Emerg Infect Dis 2017; 23:2017–2022
    [Google Scholar]
  65. Kosoy OI, Lambert AJ, Hawkinson DJ, Pastula DM, Goldsmith CS et al. Novel Thogotovirus associated with febrile illness and death, United States, 2014. Emerg Infect Dis 2015; 21:
    [Google Scholar]
  66. Smirnova SE, Karan LS, Kolyasnikova NM, Rubkin VS, Platonov AE. Prevalence of Batken/Dhori virus in the Crimean-Congo hemorrhagic fever-endemic Astrakhan region of the Russian Federation [Russian]. Epidemiol Infect Dis Russ 2011; 1:12–19
    [Google Scholar]
  67. Williams RE, Hoogstraal H, Casals J, Kaiser MN, Moussa MI. Isolation of Wanowrie, Thogoto, and Dhori Viruses from Hyalomma Ticks Infesting Camels in Egypt1. J Med Entomol 1973; 10:143–146
    [Google Scholar]
  68. Talactac MR, Yoshii K, Hernandez EP, Kusakisako K, Galay RL et al. Vector competence of Haemaphysalis longicornis ticks for a Japanese isolate of the Thogoto virus. Sci Rep 2018; 8:9300
    [Google Scholar]
  69. Butenko AM, Leshchinskaia E V, Semashko I V, Donets MA, Mart’ianova LI. Dhori virus--a causative agent of human disease. 5 cases of laboratory infection [Russian]. Vopr Virusol. 1987; 32:724–729
    [Google Scholar]
  70. Dobler G. Arboviruses causing neurological disorders in the central nervous system. Arch Virol Suppl 1996; 11:33–40
    [Google Scholar]
  71. Attoui H, Jaafar FM, de Micco P, Lamballerie de X. Coltiviruses and Seadornaviruses in North America, Europe, and Asia. Emerg Infect Dis 2005; 11:1673–1679
    [Google Scholar]
  72. Marfin AA, Campbell GL. Colorado tick fever and related Coltivirus infections. in: tick-borne diseases of humans. American Society of Microbiology 2005143–149 p.
    [Google Scholar]
  73. Chastel C, Main AJ, Couatarmanac’h A, Le Lay G, Knudson DL et al. Isolation of Eyach virus (Reoviridae, Colorado tick fever group) from Ixodes ricinus and I. ventalloi ticks in France. Arch Virol 1984; 82:161–171
    [Google Scholar]
  74. Lindgren E, Jaenson TGT. Lyme borreliosis in Europe: influences of climate and climate change, epidemiology, ecology and adaptation measures. WHO Reg Off Eur. 2006
    [Google Scholar]
  75. Fang L-Q, Liu K, Li X-L LS, Yang Y, Yao H-W et al. Emerging tick-borne infections in mainland China: an increasing public health threat. Lancet Infect Dis 2015; 15:1467–1479
    [Google Scholar]
  76. Lane RS, Piesman J, Burgdorfer W. Lyme borreliosis: relation of its causative agent to its vectors and hosts in North America and Europe. Annu Rev Entomol 1991; 36:587–609
    [Google Scholar]
  77. Piesman J, Gray JS. Lyme disease/Lyme borreliosis. Ecol Dyn Tick-Borne Zoonoses Sonenshine TN Mather Eds Oxf Univ Press Inc N Y; 1994 pp 327–350
    [Google Scholar]
  78. Coburn J, Steere AC, Glickstein L. Lyme Borreliosis. In: Tick-Borne Diseases of Humans. American Society of Microbiology 2005 pp 176–206
    [Google Scholar]
  79. Pritt BS, Mead PS, Johnson DKH, Neitzel DF, Respicio-Kingry LB et al. Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with unusually high spirochaetaemia: a descriptive study. Lancet Infect Dis 2016; 16:556–564
    [Google Scholar]
  80. Johnson TL, Graham CB, Hojgaard A, Breuner NE, Maes SE et al. Isolation of the Lyme Disease spirochete Borrelia mayonii from naturally infected rodents in Minnesota. J Med Entomol 2017; 54:1088–1092
    [Google Scholar]
  81. Barbour AG. Relapsing Fever. In: Tick-Borne Diseases of Humans. American Society of Microbiology 2005 pp 268–291
    [Google Scholar]
  82. Dworkin MS, Anderson JDE, Schwan TG, Shoemaker PC, Banerjee SN et al. Tick‐Borne relapsing fever in the northwestern United States and southwestern Canada. Clin Infect Dis 1998; 26:122–131
    [Google Scholar]
  83. Trape J-F, Diatta G, Arnathau C, Bitam I, Sarih M et al. The Epidemiology and Geographic Distribution of Relapsing Fever Borreliosis in West and North Africa, with a Review of the Ornithodoros erraticus Complex (Acari: Ixodida). Bergström S, editor.. PLoS ONE 2013; 8:e78473
    [Google Scholar]
  84. Dworkin MS, Schwan TG, Anderson Jr DE, Borchardt SM. Tick-Borne relapsing fever. Infect Dis Clin North Am 2008; 22:449–viii
    [Google Scholar]
  85. Assous MV, Wilamowski A. Relapsing fever borreliosis in Eurasia—forgotten, but certainly not gone!. Clin Microbiol Infect. 2009; 15:407–414
    [Google Scholar]
  86. Krause PJ, Narasimhan S, Wormser GP, Rollend L, Fikrig E et al. Human Borrelia miyamotoi infection in the United States. N Engl J Med 2013; 368:291–293
    [Google Scholar]
  87. Platonov AE, Karan LS, Kolyasnikova NM, Makhneva NA, Toporkova MG et al. Humans infected with relapsing fever spirochete Borrelia miyamotoi, Russia. Emerg Infect Dis 2011; 17:1816
    [Google Scholar]
  88. Wagemakers A, Staarink PJ, Sprong H, Hovius JWR. Borrelia miyamotoi: a widespread tick-borne relapsing fever spirochete. Trends Parasitol 2015; 31:260–269
    [Google Scholar]
  89. Parola P, Raoult D. Tick-borne typhuses. In Service MW. editor The Encyclopedia of Arthropod-Transmitted Infections Wallingford, UK: CABI Publishing; 2001 pp 516–524
    [Google Scholar]
  90. Dobler G, Wölfel R. Typhus and other rickettsioses: emerging infections in Germany. Dtsch Ärztebl Int 2009; 106:348
    [Google Scholar]
  91. Demma LJ, Traeger MS, Nicholson WL, Paddock CD, Blau DM et al. Rocky Mountain spotted fever from an unexpected tick vector in Arizona. N Engl J Med 2005; 353:587–594
    [Google Scholar]
  92. Paddock CD, Finley RW, Wright CS, Robinson HN, Schrodt BJ et al. Rickettsia parkeri rickettsiosis and its clinical distinction from Rocky Mountain spotted fever. Clin Infect Dis 2008; 47:1188–1196
    [Google Scholar]
  93. Labruna MB. Ecology of Rickettsia in South America. Ann N Y Acad Sci 2009; 1166:156–166
    [Google Scholar]
  94. Padgett KA, Bonilla D, Eremeeva ME, Glaser C, Lane RS et al. The eco-epidemiology of Pacific coast tick fever in California. PLoS Negl Trop Dis 2016; 10:e0005020
    [Google Scholar]
  95. Bakken JS, Dumler JS. Human granulocytic anaplasmosis. Infect Dis Clin North Am 2015; 29:341–355
    [Google Scholar]
  96. Dahlgren FS, Mandel EJ, Krebs JW, Massung RF, McQuiston JH. Increasing incidence of Ehrlichia chaffeensis and Anaplasma phagocytophilum in the United States, 2000–2007. Am J Trop Med Hyg 2011; 85:124–131
    [Google Scholar]
  97. Guzman N, Beidas SO. Anaplasma phagocytophilum (Anaplasmosis) StatPearls: StatPearls Publishing; 2018
    [Google Scholar]
  98. Ismail N, Bloch KC, McBride JW. Human ehrlichiosis and anaplasmosis. Clin Lab Med 2010; 30:261–292
    [Google Scholar]
  99. Ganguly S, Mukhopadhayay SK. Tick-borne ehrlichiosis infection in human beings. J Vector Borne Dis 2008; 45:273–280
    [Google Scholar]
  100. Pritt BS, Allerdice MEJ, Sloan LM, Paddock CD, Munderloh UG et al. Proposal to reclassify Ehrlichia muris as Ehrlichia muris subsp. muris subsp. nov. and description of Ehrlichia muris subsp. eauclairensis subsp. nov., a newly recognized tick-borne pathogen of humans. Int J Syst Evol Microbiol 2017; 67:2121–2126
    [Google Scholar]
  101. Johnson DKH, Schiffman EK, Davis JP, Neitzel DF, Sloan LM et al. Human infection with Ehrlichia muris-like pathogen, United States, 2007-2013(1). Emerg Infect Dis 2015; 21:1794–1799 [CrossRef][PubMed]
    [Google Scholar]
  102. Fehr JS, Bloemberg GV, Ritter C, Hombach M, Lüscher TF et al. Septicemia caused by tick-borne bacterial pathogen Candidatus Neoehrlichia mikurensis. Emerg Infect Dis 2010; 16:1127–1129 [CrossRef][PubMed]
    [Google Scholar]
  103. Li H, Jiang J-F, Liu W, Zheng Y-C, Huo Q-B et al. Human infection with Candidatus Neoehrlichia mikurensis, China. Emerg Infect Dis 2012; 18:1636–1639 [CrossRef][PubMed]
    [Google Scholar]
  104. Wennerås C. Infections with the tick-borne bacterium Candidatus Neoehrlichia mikurensis. Clin Microbiol Infect 2015; 21:621–630 [CrossRef]
    [Google Scholar]
  105. Portillo A, Santibz P, Palomar AM, Santibz S, Oteo JA et al. Candidatus Neoehrlichia mikurensis in Europe. New Microbes and New Infections 2018; 22:30–36 [CrossRef]
    [Google Scholar]
  106. Maurin M, Gyuranecz M. Tularaemia: clinical aspects in Europe. Lancet Infect Dis 2016; 16:113–124 [CrossRef][PubMed]
    [Google Scholar]
  107. Hirschmann JV. From squirrels to biological weapons: the early history of tularemia. Am J Med Sci 2018; 356:319–328 [CrossRef]
    [Google Scholar]
  108. Eliasson H, Lindbäck J, Nuorti JP, Arneborn M, Giesecke J et al. The 2000 tularemia outbreak: a case-control study of risk factors in Disease-Endemic and emergent areas, Sweden. Emerg Infect Dis 2002; 8:956–960 [CrossRef]
    [Google Scholar]
  109. T Yu K, Popov VP, Mokrievich AN, Pakskina ND, Kholin AV et al. Tularemia: relevant issues and forecast of epidemic situation in the territory of the Russian Federation in 2018. Probl Osobo Opasnykh Infektsii Probl Part Danger Infect Russ 2018; 1:22–29
    [Google Scholar]
  110. Gürcan Ş. Epidemiology of tularemia. Balk Med J 2014; 31:3–10
    [Google Scholar]
  111. Pritt BS. Plasmodium and Babesia. Manual of Clinical Microbiology, 11th ed. American Society of Microbiology; 2015 pp 2338–2356
    [Google Scholar]
  112. Moritz ED, Winton CS, Tonnetti L, Townsend RL, Berardi VP et al. Screening for Babesia microti in the U.S. Blood Supply. N Engl J Med 2016; 375:2236–2245 [CrossRef]
    [Google Scholar]
  113. Herwaldt BL, de Bruyn G, Pieniazek NJ, Homer M, Lofy KH et al. Babesia divergens–like infection, Washington State. Emerg Infect Dis 2004; 10:622–629 [CrossRef]
    [Google Scholar]
  114. Swei A, O'Connor KE, Couper LI, Thekkiniath J, Conrad PA et al. Evidence for transmission of the zoonotic apicomplexan parasite Babesia duncani by the tick Dermacentor albipictus. Int J Parasitol 2019; 49:95–103 [CrossRef]
    [Google Scholar]
  115. Burgess MJ, Rosenbaum ER, Pritt BS, Haselow DT, Ferren KM et al. Possible transfusion-transmitted Babesia divergens-like/MO-1 infection in an Arkansas patient. Clin Infect Dis 2017; 64:1622–1625 [CrossRef]
    [Google Scholar]
  116. Herc E, Pritt B, Huizenga T, Douce R, Hysell M et al. Probable Locally Acquired Babesia divergens– Like Infection in Woman, Michigan, USA. Emerg Infect Dis 2018; 24:1558–1560 [CrossRef]
    [Google Scholar]
  117. Herwaldt BL et al. A fatal case of babesiosis in Missouri: identification of another Piroplasm that infects humans. Ann Intern Med 1996; 124:643 [CrossRef]
    [Google Scholar]
  118. Beattie JF, Michelson ML, Holman PJ. Acute babesiosis caused by Babesia divergens in a resident of Kentucky. N Engl J Med 2002; 347:697–698 [CrossRef][PubMed]
    [Google Scholar]
  119. Gray J, Zintl A, Hildebrandt A, Hunfeld K-P, Weiss L. Zoonotic babesiosis: overview of the disease and novel aspects of pathogen identity. Ticks Tick Borne Dis 2010; 1:3–10 [CrossRef][PubMed]
    [Google Scholar]
  120. Krause PJ. Human babesiosis. Int J Parasitol 2019; 49:165–174 [CrossRef][PubMed]
    [Google Scholar]
  121. Jia N, Zheng Y-C, Jiang J-F, Jiang R-R, Jiang B-G et al. Human babesiosis caused by a Babesia crassa-Like pathogen: a case series. Clin Infect Dis 2018; 67:1110–1119 [CrossRef][PubMed]
    [Google Scholar]
  122. Commins SP, Platts-Mills TAE. Tick bites and red meat allergy. Curr Opin Allergy Clin Immunol 2013; 13:354–359 [CrossRef][PubMed]
    [Google Scholar]
  123. Kwak M, Somerville C, van Nunen S. A novel Australian tick Ixodes (Endopalpiger) australiensis inducing mammalian meat allergy after tick bite. Asia Pac Allergy 2018; 8:e31 [CrossRef][PubMed]
    [Google Scholar]
  124. de la Fuente J, Pacheco I, Villar M, Cabezas-Cruz A. The alpha-Gal syndrome: new insights into the tick-host conflict and cooperation. Parasit Vectors 2019; 12:154 [CrossRef][PubMed]
    [Google Scholar]
  125. Jackson WL. Mammalian meat allergy following a tick bite: a case report. Oxf Med Case Reports 2018; 2018:omx098 [CrossRef][PubMed]
    [Google Scholar]
  126. Kaplan AC, Carson MP. Diagnosing meat allergy after tick bite without delay. J Am Board Fam Med 2018; 31:650–652 [CrossRef][PubMed]
    [Google Scholar]
  127. Chinuki Y, Ishiwata K, Yamaji K, Takahashi H, Morita E. Haemaphysalis longicornis tick bites are a possible cause of red meat allergy in Japan. Allergy 2016; 71:421–425 [CrossRef][PubMed]
    [Google Scholar]
  128. Diaz JH. A 60-year meta-analysis of tick paralysis in the United States: a predictable, preventable, and often misdiagnosed poisoning. J Med Toxicol 2010; 6:15–21 [CrossRef][PubMed]
    [Google Scholar]
  129. Felz MW, Smith CD, Swift TR. A six-year-old girl with tick paralysis. N Engl J Med 2000; 342:90–94 [CrossRef][PubMed]
    [Google Scholar]
  130. Morshed M, Li L, Lee M-K, Fernando K, Lo T et al. A retrospective cohort study of tick paralysis in British Columbia. Vector Borne Zoonotic Dis 2017; 17:821–824 [CrossRef][PubMed]
    [Google Scholar]
  131. Hall-Mendelin S, Craig SB, Hall RA, O'Donoghue P, Atwell RB et al. Tick paralysis in Australia caused by Ixodes holocyclus Neumann. Ann Trop Med Parasitol 2011; 105:95–106 [CrossRef][PubMed]
    [Google Scholar]
  132. Barker SC, Walker AR, Australia Tof. The species that infest domestic animals and humans. Zootaxa 2014; 3816:1–144
    [Google Scholar]
  133. Beard CB, Strickman D. Federal Initiative: Tick-Borne Disease Integrated Pest Management White Paper Washington, DC: Federal Tick-Borne Disease Integrated Pest Management Workgroup; 2014
    [Google Scholar]
  134. Ginsberg HS, Stafford III KC. Management of ticks and tick-borne diseases. In Goodman JL, Dennis DT, Sonenshine DE. (editors) Tick-borne diseases of humans Washington, DC: American Society for Microbiology; 2005 pp 65–86
    [Google Scholar]
  135. Clark RP, Hu LT. Prevention of Lyme disease and other tick-borne infections. Infect Dis Clin North Am 2008; 22:381–396 [CrossRef][PubMed]
    [Google Scholar]
  136. Hook SA, Nelson CA, Mead PS. U.S. public's experience with ticks and tick-borne diseases: results from national healthstyles surveys. Ticks Tick Borne Dis 2015; 6:483–488 [CrossRef][PubMed]
    [Google Scholar]
  137. Hinckley AF, Meek JI, Ray JAE, Niesobecki SA, Connally NP et al. Effectiveness of residential acaricides to prevent Lyme and other tick-borne diseases in humans. J Infect Dis 2016; 214:182–188 [CrossRef][PubMed]
    [Google Scholar]
  138. Malouin R, Winch P, Leontsini E, Glass G, Simon D et al. Longitudinal evaluation of an educational intervention for preventing tick bites in an area with endemic Lyme disease in Baltimore County, Maryland. Am J Epidemiol 2003; 157:1039–1051 [CrossRef][PubMed]
    [Google Scholar]
  139. Connally NP, Durante AJ, Yousey-Hindes KM, Meek JI, Nelson RS et al. Peridomestic Lyme disease prevention: results of a population-based case-control study. Am J Prev Med 2009; 37:201–206 [CrossRef][PubMed]
    [Google Scholar]
  140. Ginsberg HS. Transmission risk of Lyme disease and implications for tick management. Am J Epidemiol 1993; 138:65–73 [CrossRef][PubMed]
    [Google Scholar]
  141. Eisen RJ, Piesman J, Zielinski-Gutierrez E, Eisen L. What do we need to know about disease ecology to prevent Lyme disease in the northeastern United States?. J Med Entomol 2012; 49:11–22 [CrossRef][PubMed]
    [Google Scholar]
  142. Telford SR. Deer reduction is a cornerstone of integrated deer tick management. J Integr Pest Manag 2017; 8:1–5 [CrossRef]
    [Google Scholar]
  143. Brei B, Brownstein JS, George JE, Pound JM, Miller JA et al. Evaluation of the United States department of agriculture northeast Area-wide tick control project by meta-analysis. Vector Borne Zoonotic Dis 2009; 9:423–430 [CrossRef][PubMed]
    [Google Scholar]
  144. Grear JS, Koethe R, Hoskins B, Hillger R, Dapsis L et al. The effectiveness of permethrin-treated deer stations for control of the Lyme disease vector Ixodes scapularis on Cape cod and the islands: a five-year experiment. Parasit Vectors 2014; 7:292 [CrossRef][PubMed]
    [Google Scholar]
  145. Daniels TJ, Fish D, Falco RC. Evaluation of host-targeted acaricide for reducing risk of Lyme disease in southern New York state. J Med Entomol 1991; 28:537–543 [CrossRef][PubMed]
    [Google Scholar]
  146. Stafford KC. Effectiveness of host-targeted permethrin in the control of Ixodes dammini (Acari: Ixodidae). J Med Entomol 1991; 28:611–617 [CrossRef][PubMed]
    [Google Scholar]
  147. Rochlin I, Ninivaggi DV, Benach JL. Malaria and Lyme disease - the largest vector-borne US epidemics in the last 100 years: success and failure of public health. BMC Public Health 2019; 19:804 [CrossRef][PubMed]
    [Google Scholar]
  148. Uspensky I. Ticks as the main target of human tick-borne disease control: Russian practical experience and its lessons. J Vector Ecol 1999; 24:40–53[PubMed]
    [Google Scholar]
  149. Choi SJ, Park S-W, Bae I-G, Kim S-H, Ryu SY et al. Severe fever with thrombocytopenia syndrome in South Korea, 2013-2015. PLoS Negl Trop Dis 2016; 10:e0005264 [CrossRef][PubMed]
    [Google Scholar]
  150. Dantas-Torres F. Rocky Mountain spotted fever. Lancet Infect Dis 2007; 7:724–732 [CrossRef][PubMed]
    [Google Scholar]
  151. Takahashi T, Maeda K, Suzuki T, Ishido A, Shigeoka T et al. The first identification and retrospective study of severe fever with thrombocytopenia syndrome in Japan. J Infect Dis 2014; 209:816–827 [CrossRef][PubMed]
    [Google Scholar]
  152. Yoshii K, Okamoto N, Nakao R, Klaus Hofstetter R, Yabu T et al. Isolation of the Thogoto virus from a Haemaphysalis longicornis in Kyoto City, Japan. J Gen Virol 2015; 96:2099–2103 [CrossRef][PubMed]
    [Google Scholar]
  153. Woodall JP. Thogoto virus. In Service MW. editor Encyclopedia of Arthropod-Transmitted Infections of Man and Domesticated Animals Wallingford, UK: CABI Publishing; 2001 pp 504–507
    [Google Scholar]
  154. Kurtenbach K. Lyme borreliosis. In Service MW. editor Encyclopedia of Arthropod-Transmitted Infections of Man and Domesticated Animals Wallingford, UK: CABI Publishing; 2001 pp 299–305
    [Google Scholar]
  155. CDC Heartland virus [Internet]. 2019. Available from: https://www.cdc.gov/heartland-virus/statistics/index.html .
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001206
Loading
/content/journal/jmm/10.1099/jmm.0.001206
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error