1887

Abstract

Coeliac disease (CD) is the most common immune-mediated enteropathy characterized by chronic inflammation of the small intestinal mucosa. The ingestion of gluten is responsible for the symptoms of CD, but other environmental factors are also thought to play a role in this disorder. In this study, the composition of the duodenal microbiota of coeliac children with active disease, symptom-free CD patients on a gluten-free diet and control children was determined. Bacteriological analyses of duodenal biopsy specimens were carried out by fluorescent hybridization coupled with flow cytometry. The proportions of total bacteria and Gram-negative bacteria were significantly higher in CD patients with active disease than in symptom-free CD patients and controls. and groups were significantly more abundant in CD patients with active disease than in controls, whilst these bacterial deviations were normalized in symptom-free CD patients. The ratio of to was significantly reduced in coeliac patients with either active or inactive disease compared with controls. The differences in , , , , sulphate-reducing bacteria and populations among the three groups of children were less relevant. Overall, the higher incidence of Gram-negative and potentially pro-inflammatory bacteria in the duodenal microbiota of coeliac children was linked to the symptomatic presentation of the disease and could favour the pathological process of the disorder.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47410-0
2007-12-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/12/1669.html?itemId=/content/journal/jmm/10.1099/jmm.0.47410-0&mimeType=html&fmt=ahah

References

  1. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R. & Stahl, D. A. ( 1990; ). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 1919–1925.
    [Google Scholar]
  2. Barnich, N. & Darfeuille-Michaud, A. ( 2007; ). Adherent-invasive Escherichia coli and Crohn's disease. Curr Opin Gastroenterol 23, 16–20.[CrossRef]
    [Google Scholar]
  3. Bibiloni, R., Mangold, M., Madsen, K. L., Fedorak, R. N. & Tannock, G. W. ( 2006; ). The bacteriology of biopsies differs between newly diagnosed, untreated, Crohn's disease and ulcerative colitis patients. J Med Microbiol 55, 1141–1149.[CrossRef]
    [Google Scholar]
  4. Bullock, N. R., Booth, J. C. & Gibson, G. R. ( 2004; ). Comparative composition of bacteria in the human intestinal microflora during remission and active ulcerative colitis. Curr Issues Intest Microbiol 5, 59–64.
    [Google Scholar]
  5. Collado, M. C. & Sanz, Y. ( 2007; ). Quantification of mucosa-adhered microbiota of lambs and calves by the use of culture methods and fluorescent in situ hybridization coupled with flow cytometry techniques. Vet Microbiol 121, 299–306.[CrossRef]
    [Google Scholar]
  6. Collado, M. C., Calabuig, M. & Sanz, Y. ( 2007; ). Differences between the faecal microbiota of coeliac children and healthy controls. Curr Issues Intest Microbiol 8, 9–14.
    [Google Scholar]
  7. Darfeuille-Michaud, A., Boudeau, J., Bulois, P., Neut, C., Glasser, A. L., Barnich, N., Bringer, M. A., Swidsinski, A., Beaugerie, L. & Colombel, J. F. ( 2004; ). High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 127, 412–421.[CrossRef]
    [Google Scholar]
  8. Drago, S., El Asmar, R., Di Pierro, M., Grazia-Clemente, M., Tripathi, A., Sapone, A., Thakar, M., Iacono, G., Carroccio, A. & other authors ( 2006; ). Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol 41, 408–419.
    [Google Scholar]
  9. Erridge, C., Pridmore, A., Eley, A., Stewart, J. & Poxton, I. R. ( 2004; ). Lipopolysaccharides of Bacteroides fragilis, Chlamydia trachomatis and Pseudomonas aeruginosa signal via toll-like receptor 2. J Med Microbiol 53, 735–740.[CrossRef]
    [Google Scholar]
  10. Fasano, A. & Catassi, C. ( 2005; ). Coeliac disease in children. Best Pract Res Clin Gastroenterol 19, 467–478.
    [Google Scholar]
  11. Forsberg, G., Fahlgren, A., Horstedt, P., Hammarstrom, S., Hernell, O. & Hammarstrom, M. L. ( 2004; ). Presence of bacteria and innate immunity of intestinal epithelium in childhood coeliac disease. Am J Gastroenterol 99, 894–904.[CrossRef]
    [Google Scholar]
  12. Franks, A. H., Harmsen, H. J., Raangs, G. C., Jansen, G. J., Schut, F. & Welling, G. W. ( 1998; ). Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64, 3336–3345.
    [Google Scholar]
  13. Gewirtz, A. T., Vijay-Kumar, M., Brant, S. R., Duerr, R. H., Nicolae, D. L. & Cho, J. H. ( 2006; ). Dominant-negative TLR5 polymorphism reduces adaptive immune response to flagellin and negatively associates with Crohn's disease. Am J Physiol Gastrointest Liver Physiol 290, G1157–G1163.[CrossRef]
    [Google Scholar]
  14. Guarner, F., Bourdet-Sicard, R., Brandtzaeg, P., Gill, H. S., McGuirk, P., van Eden, W., Versalovic, J., Weinstock, J. V. & Rook, G. A. W. ( 2006; ). Mechanisms of disease: the hygiene hypothesis revisited. Nat Clin Pract Gastroenterol Hepatol 3, 275–284.[CrossRef]
    [Google Scholar]
  15. Harmsen, H. J. M., Elfferich, P., Schut, F. & Welling, G. W. ( 1999; ). A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridization. Microb Ecol Health Dis 11, 3–12.[CrossRef]
    [Google Scholar]
  16. Harmsen, H. J. M., Wildeboer-Veloo, A. C., Grijpstra, J., Knol, J., Degener, J. E. & Welling, G. W. ( 2000; ). Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Appl Environ Microbiol 66, 4523–4527.[CrossRef]
    [Google Scholar]
  17. Hold, G. L., Schwiertz, A., Aminov, R. I., Blaut, M. & Flint, H. J. ( 2003; ). Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl Environ Microbiol 69, 4320–4324.[CrossRef]
    [Google Scholar]
  18. Koning, F., Schuppan, D., Cerf-Bensussan, N. & Sollid, L. M. ( 2005; ). Pathomechanisms in coeliac disease. Best Pract Res Clin Gastroenterol 19, 373–387.[CrossRef]
    [Google Scholar]
  19. Langendijk, P. S., Schut, F., Jansen, G. J., Raangs, G. C., Kamphuis, G. R., Wilkinson, M. H. F. & Welling, G. W. ( 1995; ). Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61, 3069–3075.
    [Google Scholar]
  20. Lodes, M. J., Cong, Y., Elson, C. O., Mohamath, R., Landers, C. J., Targan, S. R., Fort, M. & Hershberg, R. M. ( 2004; ). Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest 113, 1296–1306.[CrossRef]
    [Google Scholar]
  21. Londei, M., Ciacci, C., Ricciardelli, I., Vacca, L., Quaratino, S. & Maiuri, L. ( 2005; ). Gliadin as a stimulator of innate responses in celiac disease. Mol Immunol 42, 913–918.[CrossRef]
    [Google Scholar]
  22. Lucke, K., Miehlke, S., Jacobs, E. & Schuppler, M. ( 2006; ). Prevalence of Bacteroides and Prevotella spp. in ulcerative colitis. J Med Microbiol 55, 617–624.[CrossRef]
    [Google Scholar]
  23. Macfarlane, G. T., Furrie, E. & Macfarlane, S. ( 2004; ). Bacterial milieu and mucosal bacteria in ulcerative colitis. Novartis Found Symp 263, 57–64.
    [Google Scholar]
  24. Macfarlane, S., Furrie, E., Kennedy, A., Cummings, J. H. & Macfarlane, G. T. ( 2005; ). Mucosal bacteria in ulcerative colitis. Br J Nutr 93, S67–S72.[CrossRef]
    [Google Scholar]
  25. Manz, W., Amann, R., Ludwig, W., Vancanneyt, M. & Schleifer, K. H. ( 1996; ). Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga–Flavobacter–Bacteroides in the natural environment. Microbiology 142, 1097–1106.[CrossRef]
    [Google Scholar]
  26. Martinez-Medina, M., Aldeguer, X., Gonzalez-Huix, F., Acero, D. & Garcia-Gil, L. J. ( 2006; ). Abnormal microbiota composition in the ileocolonic mucosa of Crohn's disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflamm Bowel Dis 12, 1136–1145.[CrossRef]
    [Google Scholar]
  27. Medina, C., Santana, A., Llopis, M., Paz-Cabrera, M. C., Antolin, M., Mourelle, M., Guarner, F., Vilaseca, J., Gonzalez, C. & other authors ( 2005; ). Induction of colonic transmural inflammation by Bacteroides fragilis: implication of matrix metalloproteinases. Inflamm Bowel Dis 11, 99–105.[CrossRef]
    [Google Scholar]
  28. Mulder, C. J. & Bartelsman, J. F. ( 2005; ). Case-finding in coeliac disease should be intensified. Best Pract Res Clin Gastroenterol 19, 479–486.[CrossRef]
    [Google Scholar]
  29. Mylonaki, M., Rayment, N. B., Rampton, D. S., Hudspith, B. N. & Brostoff, J. ( 2005; ). Molecular characterization of rectal mucosa-associated bacterial flora in inflammatory bowel disease. Inflamm Bowel Dis 11, 481–487.[CrossRef]
    [Google Scholar]
  30. Poulsen, L. K., Lan, F., Kristensen, C. S., Hobolth, P., Molin, S. & Krogfelt, K. A. ( 1994; ). Spatial distribution of Escherichia coli in the mouse large intestine inferred from rRNA in situ hybridization. Infect Immun 62, 5191–5194.
    [Google Scholar]
  31. Rewers, M. ( 2005; ). Epidemiology of celiac disease: what are the prevalence, incidence, and progression of celiac disease?. Gastroenterology 128, S47–S51.[CrossRef]
    [Google Scholar]
  32. Sanz, Y., Sánchez, E., Marzotto, M., Calabuig, M., Torriani, S. & Dellaglio, F. ( 2007; ). Diversity of faecal bacterial communities in coeliac and healthy children detected by PCR and denaturing gradient gel electrophoresis. FEMS Immunol Med Microbiol in press
    [Google Scholar]
  33. Sartor, R. B. ( 2004; ). Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 126, 1620–1633.[CrossRef]
    [Google Scholar]
  34. Schulzke, J. D., Bentzel, C. J., Schulzke, I., Riecken, E. O. & Fromm, M. ( 1998; ). Epithelial tight junction structure in the jejunum of children with acute and treated celiac sprue. Pediatr Res 43, 435–441.[CrossRef]
    [Google Scholar]
  35. Setoyama, H., Imaoka, A., Ishikawa, H. & Umesaki, Y. ( 2003; ). Prevention of gut inflammation by Bifidobacterium in dextran sulfate-treated gnotobiotic mice associated with Bacteroides strains isolated from ulcerative colitis patients. Microbes Infect 5, 115–122.[CrossRef]
    [Google Scholar]
  36. Sokol, H., Seksik, P., Rigottier-Gois, L., Lay, C., Lepage, P., Podglajen, I., Marteau, P. & Dore, J. ( 2006; ). Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm Bowel Dis 12, 106–111.[CrossRef]
    [Google Scholar]
  37. Stene, L. C., Honeyman, M. C., Hoffenberg, E. J., Haas, J. E., Sokol, R. J., Emery, L., Taki, I., Norris, J. M., Erlich, H. A. & other authors ( 2006; ). Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. Am J Gastroenterol 101, 2333–2340.[CrossRef]
    [Google Scholar]
  38. Suau, A., Rochet, V., Sghir, A., Gramet, G., Brewaeys, S., Sutren, M., Rigottier-Gois, L. & Dore, J. ( 2001; ). Fusobacterium prausnitzii and related species represent a dominant group within the human fecal flora. Syst Appl Microbiol 24, 139–145.[CrossRef]
    [Google Scholar]
  39. Swidsinski, A., Ladhoff, A., Pernthaler, A., Hale, L. P. & Lochs, H. ( 2002; ). Mucosal flora in inflammatory bowel disease. Gastroenterology 122, 44–54.[CrossRef]
    [Google Scholar]
  40. Tjellstrom, B., Stenhammar, L., Hogberg, L., Falth-Magnusson, K., Magnusson, K. E., Midtvedt, T., Sundqvist, T. & Norin, E. ( 2005; ). Gut microflora associated characteristics in children with coeliac disease. Am J Gastroenterol 100, 2784–2788.[CrossRef]
    [Google Scholar]
  41. Wallner, G., Amann, R. & Beisker, W. ( 1993; ). Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14, 136–143.[CrossRef]
    [Google Scholar]
  42. Wang, M., Ahrne, S., Jeppsson, B. & Molin, G. ( 2005; ). Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 54, 219–231.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47410-0
Loading
/content/journal/jmm/10.1099/jmm.0.47410-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error