1887

Abstract

A Gram-negative, motile, rod-shaped bacterial strain, CA-0114, was isolated from the midgut of a western honey bee, . The isolate exhibited ≤96.43 % 16S rRNA gene sequence identity (1540 bp) to members of the families and . Phylogenetic trees based on genome distance phylogeny and concatenated protein sequences encoded by conserved genes , , , , and separated the isolate from other genera forming a distinct lineage in the . In both trees, the closest relatives were YMB-R21 and BIT-L3, which were isolated previously from L., a plastic-eating mealworm. Digital DNA–DNA hybridization, orthologous average nucleotide identity and average amino acid identity values between strain CA-0114 and the closest related members within the were ≤23.1, 75.45 and 76.04 %, respectively. The complete genome of strain CA-0114 was 4 451669 bp with a G+C content of 52.12 mol%. Notably, the apparent inability of strain CA-0114 to ferment -glucose, inositol and -rhamnose in the API 20E system is unique among closely related members of the . Based on the results obtained through genotypic and phenotypic analysis, we propose that strain CA-0114 represents a novel species and genus within the family , for which we propose the name gen. nov., sp. nov. (type strain CA-0114=ATCC TSD-396=DSM 116385).

Funding
This study was supported by the:
  • Canada First Research Excellence Fund (Award THE3-00525)
    • Principle Award Recipient: EmmaAllen-Vercoe
  • CIHR (Award PDF-402947-2023)
    • Principle Award Recipient: BrendanA Daisley
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006346
2024-04-23
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/4/ijsem006346.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006346&mimeType=html&fmt=ahah

References

  1. Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the “Enterobacteriales”: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:5575–5599 [View Article] [PubMed]
    [Google Scholar]
  2. Gao G, Zhang Y, Niu S, Chen Y, Wang S et al. Reclassification of Enterobacter sp. FY-07 as Kosakonia oryzendophytica FY-07 and its potential to promote plant growth. Microorganisms 2022; 10:575 [View Article] [PubMed]
    [Google Scholar]
  3. Janda JM, Abbott SL. The changing face of the family Enterobacteriaceae (order: “Enterobacterales”): new members, taxonomic issues, geographic expansion, and new diseases and disease syndromes. Clin Microbiol Rev 2021; 34:e00174-20 [View Article] [PubMed]
    [Google Scholar]
  4. Jiang L, Wang D, Kim J-S, Lee JH, Kim D-H et al. Reclassification of genus Izhakiella into the family Erwiniaceae based on phylogenetic and genomic analyses. Int J Syst Evol Microbiol 2020; 70:3541–3546 [View Article] [PubMed]
    [Google Scholar]
  5. Soutar CD, Stavrinides J. Phylogenetic analysis supporting the taxonomic revision of eight genera within the bacterial order Enterobacterales. Int J Syst Evol Microbiol 2020; 70:6524–6530 [View Article] [PubMed]
    [Google Scholar]
  6. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  7. Zhang Q, Wang S, Zhang X, Zhang K, Liu W et al. Enterobacter hormaechei in the intestines of housefly larvae promotes host growth by inhibiting harmful intestinal bacteria. Parasit Vectors 2021; 14:598 [View Article] [PubMed]
    [Google Scholar]
  8. García-González T, Sáenz-Hidalgo HK, Silva-Rojas HV, Morales-Nieto C, Vancheva T et al. Enterobacter cloacae, an emerging plant-pathogenic bacterium affecting chili pepper seedlings. Plant Pathol J 2018; 34:1–10 [View Article] [PubMed]
    [Google Scholar]
  9. Rossmann S, Dees MW, Perminow J, Meadow R, Brurberg MB. Soft rot Enterobacteriaceae are carried by a large range of insect species in potato fields. Appl Environ Microbiol 2018; 84:12 [View Article] [PubMed]
    [Google Scholar]
  10. Lim JY, Yoon J, Hovde CJ. A brief overview of Escherichia coli O157:H7 and its plasmid O157. J Microbiol Biotechnol 2010; 20:5–14 [PubMed]
    [Google Scholar]
  11. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M et al. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 2010; 50:882–889 [View Article] [PubMed]
    [Google Scholar]
  12. Henderson SC, Bounous DI, Lee MD. Early events in the pathogenesis of avian salmonellosis. Infect Immun 1999; 67:3580–3586 [View Article] [PubMed]
    [Google Scholar]
  13. Wang Z, Duan L, Liu F, Hu Y, Leng C et al. First report of Enterobacter hormaechei with respiratory disease in calves. BMC Vet Res 2020; 16:1 [View Article] [PubMed]
    [Google Scholar]
  14. Abdelgaffar H, Jackson T, Jurat-Fuentes JL. Bacterial diseases of insects. In Rowley AF, Coates CJ. eds Invertebrate Pathology Oxford University Press; [View Article]
    [Google Scholar]
  15. Konecka E, Mokracka J, Krzymińska S, Kaznowski A. Evaluation of the pathogenic potential of insecticidal Serratia marcescens strains to humans. Pol J Microbiol 2019; 68:185–191 [View Article] [PubMed]
    [Google Scholar]
  16. Altaf A, Tunio N, Tunio S, Zafar MR, Bajwa N. Salmonella urinary tract infection and bacteremia following non-typhoidal Salmonella gastroenteritis: an unusual presentation. Cureus 2020; 12:e12194 [View Article] [PubMed]
    [Google Scholar]
  17. Khawcharoenporn T, Vasoo S, Singh K. Urinary tract infections due to multidrug-resistant Enterobacteriaceae: prevalence and risk factors in a Chicago emergency department. Emerg Med Int 2013; 2013:258517 [View Article] [PubMed]
    [Google Scholar]
  18. Sawano T, Tsubokura M, Leppold C, Ozaki A, Fujioka S et al. Klebsiella pneumoniae sepsis deteriorated by uncontrolled underlying disease in a decontamination worker in Fukushima, Japan. J Occup Health 2016; 58:320–322 [View Article] [PubMed]
    [Google Scholar]
  19. Wilson J, Elgohari S, Livermore DM, Cookson B, Johnson A et al. Trends among pathogens reported as causing bacteraemia in England, 2004-2008. Clin Microbiol Infect 2011; 17:451–458 [View Article] [PubMed]
    [Google Scholar]
  20. Bichon A, Aubry C, Dubourg G, Drouet H, Lagier JC et al. Escherichia coli spontaneous community-acquired meningitis in adults: a case report and literature review. Int J Infect Dis 2018; 67:70–74 [View Article] [PubMed]
    [Google Scholar]
  21. Chauhan S, Noor J, Yegneswaran B, Kodali H. Enterobacter meningitis and challenges in treatment. J Clin Diagn Res 2016; 10:OD10–OD11 [View Article] [PubMed]
    [Google Scholar]
  22. Nadarasah G, Stavrinides J. Insects as alternative hosts for phytopathogenic bacteria. FEMS Microbiol Rev 2011; 35:555–575 [View Article] [PubMed]
    [Google Scholar]
  23. Soto-Arias JP, Groves RL, Barak JD. Transmission and retention of Salmonella enterica by phytophagous hemipteran insects. Appl Environ Microbiol 2014; 80:5447–5456 [View Article] [PubMed]
    [Google Scholar]
  24. Canada S. Statistical overview of the Canadian honey and bee industry; 2020 https://agriculture.canada.ca/sites/default/files/documents/2021-10/honey_report_2020-eng.pdf
  25. Engel P, Kwong WK, McFrederick Q, Anderson KE, Barribeau SM et al. The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. mBio 2016; 7:e02164-15 [View Article] [PubMed]
    [Google Scholar]
  26. Lang H, Duan H, Wang J, Zhang W, Guo J et al. Specific strains of honeybee gut Lactobacillus stimulate host immune system to protect against pathogenic Hafnia alvei. Microbiol Spectr 2022; 10:e0189621 [View Article] [PubMed]
    [Google Scholar]
  27. Ribière C, Hegarty C, Stephenson H, Whelan P, O’Toole PW. Gut and whole-body microbiota of the honey bee separate thriving and non-thriving hives. Microb Ecol 2019; 78:195–205 [View Article] [PubMed]
    [Google Scholar]
  28. Jones JC, Fruciano C, Marchant J, Hildebrand F, Forslund S et al. The gut microbiome is associated with behavioural task in honey bees. Insectes Soc 2018; 65:419–429 [View Article] [PubMed]
    [Google Scholar]
  29. Steele MI, Motta EVS, Gattu T, Martinez D, Moran NA. The gut microbiota protects bees from invasion by a bacterial pathogen. Microbiol Spectr 2021; 9:e0039421 [View Article] [PubMed]
    [Google Scholar]
  30. Kwong WK, Mancenido AL, Moran NA. Immune system stimulation by the native gut microbiota of honey bees. R Soc Open Sci 2017; 4:170003 [View Article] [PubMed]
    [Google Scholar]
  31. Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc Natl Acad Sci USA 2017; 114:4775–4780 [View Article] [PubMed]
    [Google Scholar]
  32. Zheng H, Nishida A, Kwong WK, Koch H, Engel P et al. Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. mBio 2016; 7:e01326-16 [View Article] [PubMed]
    [Google Scholar]
  33. Kwong WK, Moran NA. Gut microbial communities of social bees. Nat Rev Microbiol 2016; 14:374–384 [View Article] [PubMed]
    [Google Scholar]
  34. Moran NA, Hansen AK, Powell JE, Sabree ZL. Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS One 2012; 7:e36393 [View Article] [PubMed]
    [Google Scholar]
  35. Sabree ZL, Hansen AK, Moran NA. Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honey bees. PLoS One 2012; 7:e41250 [View Article] [PubMed]
    [Google Scholar]
  36. Anderson KE, Sheehan TH, Mott BM, Maes P, Snyder L et al. Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS One 2013; 8:e83125 [View Article] [PubMed]
    [Google Scholar]
  37. Corby-Harris V, Maes P, Anderson KE. The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS One 2014; 9:e95056 [View Article] [PubMed]
    [Google Scholar]
  38. Bleau N, Bouslama S, Giovenazzo P, Derome N. Dynamics of the honeybee (Apis mellifera) gut microbiota throughout the overwintering period in Canada. Microorganisms 2020; 8:1146 [View Article] [PubMed]
    [Google Scholar]
  39. Hubert J, Bicianova M, Ledvinka O, Kamler M, Lester PJ et al. Changes in the bacteriome of honey bees associated with the parasite Varroa destructor, and pathogens Nosema and Lotmaria passim. Microb Ecol 2017; 73:685–698 [View Article] [PubMed]
    [Google Scholar]
  40. Hubert J, Kamler M, Nesvorna M, Ledvinka O, Kopecky J et al. Comparison of varroa destructor and worker honeybee microbiota within hives indicates shared bacteria. Microb Ecol 2016; 72:448–459 [View Article] [PubMed]
    [Google Scholar]
  41. Kakumanu ML, Reeves AM, Anderson TD, Rodrigues RR, Williams MA. Honey bee gut microbiome is altered by in-hive pesticide exposures. Front Microbiol 2016; 7:1255 [View Article] [PubMed]
    [Google Scholar]
  42. Pakwan C, Kaltenpoth M, Weiss B, Chantawannakul P, Jun G et al. Bacterial communities associated with the ectoparasitic mites Varroa destructor and Tropilaelaps mercedesae of the honey bee (Apis mellifera). FEMS Microbiol Ecol 2017; 93: [View Article] [PubMed]
    [Google Scholar]
  43. Chang R, Chen J, Zhong Z, Li Y, Wu K et al. Inflammatory bowel disease-associated Escherichia coli strain LF82 in the damage of gut and cognition of honeybees. Front Cell Infect Microbiol 2022; 12:983169 [View Article] [PubMed]
    [Google Scholar]
  44. Lakhman A, Galatiuk O, Romanishina T, Behas V, Zastulka O. Bees Klebsiellosis: key aspects of pathogenesis. Adv Anim Vet Sci 2021; 9:1190–1193 [View Article]
    [Google Scholar]
  45. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018; 34:2666–2669 [View Article] [PubMed]
    [Google Scholar]
  46. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  47. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [View Article] [PubMed]
    [Google Scholar]
  48. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  49. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 2009; 25:119–120 [View Article] [PubMed]
    [Google Scholar]
  50. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539 [View Article] [PubMed]
    [Google Scholar]
  51. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  52. Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 2016; 44:W232–5 [View Article] [PubMed]
    [Google Scholar]
  53. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  54. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [View Article] [PubMed]
    [Google Scholar]
  55. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  56. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  57. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  58. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  59. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  60. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  61. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ 2016 [View Article]
    [Google Scholar]
  62. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  63. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genom 2013; 14:913 [View Article] [PubMed]
    [Google Scholar]
  64. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article] [PubMed]
    [Google Scholar]
  65. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 2022; 38:5315–5316 [View Article] [PubMed]
    [Google Scholar]
  66. Dow EG, Wood-Charlson EM, Biller SJ, Paustian T, Schirmer A et al. Bioinformatic teaching resources – for educators, by educators – using KBase, a free, user-friendly, open source platform. Front Educ 2021; 6: [View Article]
    [Google Scholar]
  67. Hu L, Yang Y. Tenebrionibacter intestinalis gen. nov., sp. nov., a member of a novel genus of the family Enterobacteriaceae, isolated from the gut of the plastic-eating mealworm Tenebrio molitor L. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  68. Lee SD, Kim S-M, Byeon Y-S, Yang HL, Chang SH et al. Tenebrionicola larvae gen. nov., sp. nov., isolated from larvae of mealworm Tenebrio molitor L., and a proposal to transfer Erwinia teleogrylli Liu et al. 2016 to a new genus Entomohabitans as Entomohabitans teleogrylli comb. nov. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  69. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article] [PubMed]
    [Google Scholar]
  70. Lombardi C, Tolchard J, Bouillot S, Signor L, Gebus C et al. Structural and functional characterization of the type three secretion system (T3SS) needle of Pseudomonas aeruginosa. Front Microbiol 2019; 10:573 [View Article] [PubMed]
    [Google Scholar]
  71. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 2001; 413:852–856 [View Article] [PubMed]
    [Google Scholar]
  72. Soutar CD, Stavrinides J. The evolution of three siderophore biosynthetic clusters in environmental and host-associating strains of Pantoea. Mol Genet Genom 2018; 293:1453–1467 [View Article] [PubMed]
    [Google Scholar]
  73. Burbank L, Mohammadi M, Roper MC. Siderophore-mediated iron acquisition influences motility and is required for full virulence of the xylem-dwelling bacterial phytopathogen Pantoea stewartii subsp. stewartii. Appl Environ Microbiol 2015; 81:139–148 [View Article] [PubMed]
    [Google Scholar]
  74. Hirschmann M, Grundmann F, Bode HB. Identification and occurrence of the hydroxamate siderophores aerobactin, putrebactin, avaroferrin and ochrobactin C as virulence factors from entomopathogenic bacteria. Environ Microbiol 2017; 19:4080–4090 [View Article] [PubMed]
    [Google Scholar]
  75. Ling J, Pan H, Gao Q, Xiong L, Zhou Y et al. Aerobactin synthesis genes iucA and iucC contribute to the pathogenicity of avian pathogenic Escherichia coli O2 strain E058. PLoS One 2013; 8:e57794 [View Article] [PubMed]
    [Google Scholar]
  76. Russo TA, Olson R, Macdonald U, Metzger D, Maltese LM et al. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect Immun 2014; 82:2356–2367 [View Article] [PubMed]
    [Google Scholar]
  77. Gómez-Gómez J-M, Manfredi C, Alonso J-C, Blázquez J. A novel role for RecA under non-stress: promotion of swarming motility in Escherichia coli K-12. BMC Biol 2007; 5:14 [View Article] [PubMed]
    [Google Scholar]
  78. Romero S, Nastasa A, Chapman A, Kwong WK, Foster LJ. The honey bee gut microbiota: strategies for study and characterization. Insect Mol Biol 2019; 28:455–472 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006346
Loading
/content/journal/ijsem/10.1099/ijsem.0.006346
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error