1887

Abstract

A Gram-stain-negative, rod-shaped, indole-producing, and cellulose-degrading bacterial strain, designated NEAU-G-C5, was isolated from soil collected from a forest in Dali city, Yunnan province, south China. 16S rRNA gene sequence analysis showed that strain NEAU-G-C5 was assigned to the genus and showed high sequence similarities to 12-OD1 (98.32 %) and 6 NM-7 (98.41 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-G-C5 formed a lineage related to 12-OD1 and 6 NM-7. The major fatty acids of the strain were C, C ω7, and C cyclo. The respiratory quinone was Q-8. The polar lipid profile of the strain showed the presence of diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. In addition, the average nucleotide identity values between strain NEAU-G-C5 and its reference strains 12-OD1, 6 NM-7, NS9, and TSA1 were 89.7, 88.2, 81.3, and 88.0 %, respectively, and the levels of digital DNA–DNA hybridization between them were found to be 58.5 % (54.9–62.0 %), 53.2 % (49.8–56.7 %), 31.9 % (28.6–35.5 %), and 57.7 % (54.1–61.2 %), respectively, which were lower than the accepted threshold values of 95–96 % and 70 %, respectively. The DNA G+C content of strain NEAU-G-C5 was 66.5 mol%. The strain could produce indoleacetic acid and cellulase. On the basis of the phenotypic, genotypic, and chemotaxonomic characteristics, we conclude that strain NEAU-G-C5 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is NEAU-G-C5 (=MCCC 1K08668=KCTC 8080).

Funding
This study was supported by the:
  • Natural Science Foundation of Heilongjiang Province (Award TD2022C002)
    • Principle Award Recipient: WenshengXiang
  • Key Programme (Award 32030090)
    • Principle Award Recipient: WenshengXiang
  • Key Programme (Award U22A20483)
    • Principle Award Recipient: XiangjingWang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006331
2024-04-15
2024-04-29
Loading full text...

Full text loading...

References

  1. La Scola B, Birtles RJ, Mallet MN, Raoult D. Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 1998; 36:2847–2852 [View Article] [PubMed]
    [Google Scholar]
  2. Huq MA, Ma JC, Srinivasan S, Parvez MAK, Rahman MM et al. Massilia agrisoli sp. nov., isolated from rhizospheric soil of banana. Int J Syst Evol Microbiol 2023; 73: [View Article] [PubMed]
    [Google Scholar]
  3. Sedláček I, Holochová P, Busse HJ, Koublová V, Králová S et al. Characterisation of waterborne psychrophilic Massilia isolates with violacein production and description of Massilia antarctica sp. nov. Microorganisms 2022; 10:704 [View Article] [PubMed]
    [Google Scholar]
  4. Zhu HZ, Zhang ZF, Zhou N, Jiang CY, Wang BJ et al. Bacteria and metabolic potential in karst caves revealed by intensive bacterial cultivation and genome assembly. Appl Environ Microbiol 2021; 87:e02440-20 [View Article] [PubMed]
    [Google Scholar]
  5. Chaudhary DK, Kim J. Massilia agri sp. nov., isolated from reclaimed grassland soil. Int J Syst Evol Microbiol 2017; 67:2696–2703 [View Article] [PubMed]
    [Google Scholar]
  6. Singh H, Du J, Won K, Yang JE, Yin C et al. Massilia arvi sp. nov., isolated from fallow-land soil previously cultivated with Brassica oleracea, and emended description of the genus Massilia. Int J Syst Evol Microbiol 2015; 65:3690–3696 [View Article] [PubMed]
    [Google Scholar]
  7. Zu D, Wanner G, Overmann J. Massilia brevitalea sp. nov., a novel betaproteobacterium isolated from lysimeter soil. Int J Syst Evol Microbiol 2008; 58:1245–1251 [View Article] [PubMed]
    [Google Scholar]
  8. Kim J. Massilia kyonggiensis sp. nov., isolated from forest soil in Korea. Int J Syst Evol Microbiol 2014; 52:378–383 [View Article] [PubMed]
    [Google Scholar]
  9. Lee H, Kim DU, Park S, Yoon JH, Ka JO. Massilia chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from soil. Antonie van Leeuwenhoek 2017; 110:751–758 [View Article] [PubMed]
    [Google Scholar]
  10. Zheng BX, Bi QF, Hao XL, Zhou GW, Yang XR. Massilia phosphatilytica sp. nov., a phosphate solubilizing bacteria isolated from a long-term fertilized soil. Int J Syst Evol Microbiol 2017; 67:2514–2519 [View Article] [PubMed]
    [Google Scholar]
  11. Weon HY, Kim BY, Son JA, Jang HB, Hong SK et al. Massilia aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2008; 58:1422–1425 [View Article] [PubMed]
    [Google Scholar]
  12. Weon HY, Kim BY, Hong SB, Jeon YA, Koo BS et al. Massilia niabensis sp. nov. and Massilia niastensis sp. nov., isolated from air samples. Int J Syst Evol Microbiol 2008; 59:1656–1660 [View Article] [PubMed]
    [Google Scholar]
  13. Orthová I, Kämpfer P, Glaeser SP, Kaden R, Busse HJ. Massilia norwichensis sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2015; 65:56–64 [View Article] [PubMed]
    [Google Scholar]
  14. Gallego V, Sánchez-Porro C, García MT, Ventosa A. Massilia aurea sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 2016; 56:2449–2453 [View Article] [PubMed]
    [Google Scholar]
  15. Shen L, Liu YQ, Wang NL, Yao TD, Jiao NZ et al. Massilia yuzhufengensis sp. nov., isolated from an ice core. Int J Syst Evol Microbiol 2013; 263:1285–1290 [View Article] [PubMed]
    [Google Scholar]
  16. Guo BX, Liu YQ, Gu ZQ, Shen L, Liu KS et al. Massilia psychrophila sp. nov., isolated from an ice core. Int J Syst Evol Microbiol 2016; 66:4088–4093 [View Article] [PubMed]
    [Google Scholar]
  17. Wang HS, Zhang XX, Wang SY, Zhao BS, Lou K et al. Massilia violaceinigra sp. nov., a novel purple-pigmented bacterium isolated from glacier permafrost. Int J Syst Evol Microbiol 2018; 68:2271–2278 [View Article] [PubMed]
    [Google Scholar]
  18. Sun LN, Yang ED, Cui DX, Ni YW, Wang YB et al. Massilia buxea sp. nov., isolated from a rock surface. Int J Syst Evol Microbiol 2017; 67:4390–4396 [View Article] [PubMed]
    [Google Scholar]
  19. Kämpfer P, Falsen E, Busse HJ. Naxibacter varians sp. nov. and Naxibacter haematophilus sp. nov., and emended description of the genus Naxibacter. Int J Syst Evol Microbiol 2008; 58:1680–1684 [View Article] [PubMed]
    [Google Scholar]
  20. Kämpfer P, Lodders N, Martin K, Falsen E. Massilia oculi sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol 2012; 62:364–369 [View Article] [PubMed]
    [Google Scholar]
  21. Feng GD, Yang S-Z, Li H-P, Zhu H-H. Massilia putida sp. nov., a dimethyl disulfide-producing bacterium isolated from wolfram mine tailing. Int J Syst Evol Microbiol 2016; 66:50–55 [View Article] [PubMed]
    [Google Scholar]
  22. Yang ED, Zhao MY, Li SS, Wang YX, Sun LN et al. Massilia atriviolacea sp. nov., a dark purple-pigmented bacterium isolated from soil. Int J Syst Evol Microbiol 2019; 69:2135–2141 [View Article] [PubMed]
    [Google Scholar]
  23. Stackebrandt E, Ebers J. Taxonomic parameter revisited: tarnished gold standards. Microbiol Today 2006; 4:6–9
    [Google Scholar]
  24. Kim DU, Ka JO. Roseomonas soli sp. nov., isolated from an agricultural soil cultivated with Chinese cabbage (Brassica campestris). Int J Syst Evol Microbiol 2014; 64:1024–1029 [View Article] [PubMed]
    [Google Scholar]
  25. Embley TM. The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 1991; 13:171–174 [View Article] [PubMed]
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  29. Yan Z, Cao Z, Liu Y, Ogilvie HA, Nakhleh L. Maximum parsimony inference of phylogenetic networks in the presence of polyploid complexes. Syst Biol 2021; 71:706–720 [View Article] [PubMed]
    [Google Scholar]
  30. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Mol Biol Evol 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  32. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  33. Nikodinovic J, Barrow KD, Chuck JA. High yield preparation of genomic DNA from streptomyces. Biotechniques 2003; 35:932–934 [View Article] [PubMed]
    [Google Scholar]
  34. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article] [PubMed]
    [Google Scholar]
  35. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article] [PubMed]
    [Google Scholar]
  36. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  38. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  40. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  41. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on systematic bacteriology.Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  42. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  43. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article] [PubMed]
    [Google Scholar]
  44. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009; 37:D233–D238 [View Article] [PubMed]
    [Google Scholar]
  45. Suleiman M, Krüger A, Antranikian G. Biomass-degrading glycoside hydrolases of archaeal origin. Biotechnol Biofuels 2020; 13:153 [View Article] [PubMed]
    [Google Scholar]
  46. Sun HM, Zhang JK, Liu WT, E WH, Wang X et al. Identification and combinatorial engineering of indole-3-acetic acid synthetic pathways in Paenibacillus polymyxa. Biotechnol Biofuels Bioprod 2022; 15:81 [View Article] [PubMed]
    [Google Scholar]
  47. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 2011; 39:W339–W346 [View Article] [PubMed]
    [Google Scholar]
  48. Chen L, Xiong Z, Sun L, Yang J, Jin Q. VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 2012; 40:D641–D645 [View Article] [PubMed]
    [Google Scholar]
  49. Liu B, Pop M. ARDB-antibiotic resistance genes database. Nucleic Acids Res 2009; 37:D443–D447 [View Article] [PubMed]
    [Google Scholar]
  50. Kelly KL. Inter-Society Colour Council-National Bureau of Standards Colour-Name Charts Illustrated with Centroid Colours 1964
    [Google Scholar]
  51. Cao P, Li CX, Tan KF, Liu CZ, Xu X et al. Characterization, phylogenetic analyses, and pathogenicity of Enterobacter cloacae on rice seedlings in Heilongjiang province, China. Plant Dis 2020; 104:1601–1609 [View Article] [PubMed]
    [Google Scholar]
  52. Zhao JW, Han LY, Yu MY, Cao P, Li DM et al. Characterization of Streptomyces sporangiiformans sp. nov., a novel soil actinomycete with antibacterial activity against Ralstonia solanacearum. Microorganisms 2019; 7:360 [View Article] [PubMed]
    [Google Scholar]
  53. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  54. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  55. Xu LH, Li WJ, Liu ZH, Jiang CL. Actinomycete Systematic-Principle,Methods and Practice Beijing: Science Press; 2007
    [Google Scholar]
  56. Ruan J, Huang Y. Rapid Identification and Systematics of Actinobacteria Beijing: Science Press; 2011
    [Google Scholar]
  57. Gutierrez CK, Matsui GY, Lincoln DE, Lovell CR. Production of the phytohormone indole-3-acetic acid by estuarine species of the genus Vibrio. Appl Environ Microbiol 2009; 75:2253–2258 [View Article] [PubMed]
    [Google Scholar]
  58. Teather RM, Wood PJ. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 1982; 43:777–780 [View Article] [PubMed]
    [Google Scholar]
  59. Gao RX, Liu CX, Zhao JW, Jia FY, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014; 105:307–315 [View Article] [PubMed]
    [Google Scholar]
  60. Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2021; 61:1165–1169 [View Article] [PubMed]
    [Google Scholar]
  61. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. eds Chemical Methods in Bacterial Systematics Academic Press; 1985 pp 267–284
    [Google Scholar]
  62. Zhao JW, Yu B, Han CY, Cao P, Yu ZY et al. Microbispora fusca sp. nov., a novel actinomycete isolated from the ear of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2020; 70:139–145 [View Article]
    [Google Scholar]
  63. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006331
Loading
/content/journal/ijsem/10.1099/ijsem.0.006331
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error