1887

Abstract

The alphaproteobacterial order consists of 38 families comprising at least 152 validly published genera as of January 2024. The order was first described in 1957 and underwent important revisions in 2020. However, we show that several inconsistencies in the taxonomy of this order remain and we argue that there is a need for a consistent framework for defining families within the order. We propose a common genome-based framework for defining families within the order , suggesting that families represent monophyletic groups in core-genome phylogenies that share pairwise average amino acid identity values above ~75 % when calculated from a core set of 59 proteins. Applying this framework, we propose the formation of four new families and to reassign the genera , , and into fam. nov., fam. nov., and fam. nov., respectively, and the genera , , , and into fam. nov. We further propose to unify the families , , , and as ; the families and as ; the families and as ; and the families and as . Lastly, we propose to reassign several genera to existing families. Specifically, we propose to reassign the genus to the family ; the genera , , and to the family ; the genus to the emended family ; the genus to the family ; and the genus to the family . Our data also support the recent proposal to reassign the genus to the family .

Funding
This study was supported by the:
  • Natural Sciences and Engineering Research Council of Canada (Award RGPIN-2020-07000)
    • Principle Award Recipient: GeorgeC diCenzo
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006328
2024-04-15
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/4/ijsem006328.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006328&mimeType=html&fmt=ahah

References

  1. diCenzo G, Yang Y, Young P, Kuzmanovic N. Refining the taxonomy of the order Hyphomicrobiales (Rhizobiales) based on whole genome comparisons of over 130 type strains Figshare 2024 https://doi.org/10.6084/m9.figshare.25471522
    [Google Scholar]
  2. Kuykendall LD. Order VI, Rhizobiales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology: The Proteobacteria (Part C) New York, NY: Springer; 2005 p 324
    [Google Scholar]
  3. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  4. Douglas HC. Order III. Hyphomicrobiales Douglas, ord. nov. In Breed RS, Murray EGD, Smith NR. eds Bergey’s Manual of Determinative Bacteriology Baltimore, USA: The Williams and Wilkins Co.; 1957 p 276
    [Google Scholar]
  5. Wang ET. Current systematics of rhizobia. Wang ET, Tian CF, Chen WF, Young JPW, Chen WX. Ecology and Evolution of Rhizobia: Principles and Applications Singapore: Springer;41–102
    [Google Scholar]
  6. Kuzmanović N, Fagorzi C, Mengoni A, Lassalle F, diCenzo GC. Taxonomy of Rhizobiaceae revisited: proposal of a new framework for genus delimitation. Int J Syst Evol Microbiol 2022; 72:005243 [View Article]
    [Google Scholar]
  7. Rahi P, Khairnar M, Hagir A, Narayan A, Jain KR et al. Peteryoungia gen. nov. with four new species combinations and description of Peteryoungia desertarenae sp. nov., and taxonomic revision of the genus Ciceribacter based on phylogenomics of Rhizobiaceae. Arch Microbiol 2021; 203:3591–3604
    [Google Scholar]
  8. Moreno E, Middlebrook EA, Altamirano-Silva P, Al Dahouk S, Araj GF et al. If you’re not confused, you’re not paying attention: Ochrobactrum is not Brucella. J Clin Microbiol 2023e00438-23 [View Article] [PubMed]
    [Google Scholar]
  9. Doronina NV, Chemodurova AA, Grouzdev DS, Koziaeva VV, Agafonova NV et al. Ancylobacter moscoviensis sp. nov., novel facultatively methylotrophic bacteria from activated sludge and the reclassification of Starkeya novella (Starkey 1934) Kelly et al. 2000 as Ancylobacter novellus comb. nov., Starkeya koreensis Im et al. 2006 as Ancylobacter koreensis comb.nov., Angulomicrobium tetraedrale Vasil’eva et al. 1986 as Ancylobacter tetraedralis comb. nov., Angulomicrobium amanitiforme Fritz et al. 2004 as Ancylobacter amanitiformis comb. nov., and Methylorhabdus multivorans Doronina et al. 1996 as Ancylobacter multivorans comb. nov., and emended description of the genus Ancylobacter. Antonie van Leeuwenhoek 2023; 116:153–170 [View Article] [PubMed]
    [Google Scholar]
  10. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article]
    [Google Scholar]
  11. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013; 79:7696–7701 [View Article] [PubMed]
    [Google Scholar]
  12. Vinuesa P, Ochoa-Sánchez LE, Contreras-Moreira B. GET_PHYLOMARKERS, a software package to select optimal orthologous clusters for phylogenomics and inferring pan-genome phylogenies, used for a critical geno-taxonomic revision of the genus Stenotrophomonas. Front Microbiol 2018; 9:771 [View Article] [PubMed]
    [Google Scholar]
  13. Kuzmanović N, Biondi E, Overmann J, Puławska J, Verbarg S et al. Genomic analysis provides novel insights into diversification and taxonomy of Allorhizobium vitis (i.e. Agrobacterium vitis). BMC Genomics 2022; 23:462 [View Article] [PubMed]
    [Google Scholar]
  14. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019; 35:526–528 [View Article] [PubMed]
    [Google Scholar]
  15. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  16. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article]
    [Google Scholar]
  17. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539 [View Article] [PubMed]
    [Google Scholar]
  18. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  19. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  20. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  21. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  22. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article] [PubMed]
    [Google Scholar]
  23. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [View Article] [PubMed]
    [Google Scholar]
  24. diCenzo GC, Yang Y, Young JPW, Kuzmanović N. Refining the taxonomy of the order Hyphomicrobiales (Rhizobiales) based on whole genome comparisons of over 130 type strains. Figshare 2024
    [Google Scholar]
  25. Hassler HB, Probert B, Moore C, Lawson E, Jackson RW et al. Phylogenies of the 16S rRNA gene and its hypervariable regions lack concordance with core genome phylogenies. Microbiome 2022; 10:104 [View Article] [PubMed]
    [Google Scholar]
  26. Wang X-N, Wang L, He W, Yang Q, Zhang D-F. Description of Flavimaribacter sediminis gen. nov., sp. nov., a new member of the family Rhizobiaceae isolated from marine sediment. Curr Microbiol 2023; 80:301
    [Google Scholar]
  27. Doronina NV, Trotsenko YA, Krausova VI, Boulygina ES, Tourova TP. Methylopila capsulata gen. nov., sp. nov., a novel non-pigmented aerobic facultatively methylotrophic bacterium. Int J Syst Bacteriol 1998; 48:1313–1321
    [Google Scholar]
  28. Bowman JP. Family V. Methylocystaceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology: The Proteobacteria (Part C) New York, NY: Springer; 2005 p 411
    [Google Scholar]
  29. Kämpfer P, Glaeser SP, Gräber M, Rabenstein A, Kuever J et al. Pseudochelatococcus lubricantis gen. nov., sp. nov. and Pseudochelatococcus contaminans sp. nov. from coolant lubricants. Int J Syst Evol Microbiol 2015; 65:147–153
    [Google Scholar]
  30. Chen X, Li Q-Y, Li G-D, Lei H, Jiang Y et al. Enterovirga rhinocerotis gen. nov., sp. nov., isolated from Rhinoceros unicornis faeces. Antonie van Leeuwenhoek 2017; 110:553–562 [View Article] [PubMed]
    [Google Scholar]
  31. Garrity GM, Bell JA, Lilburn T. Class I. Alphaproteobacteria class. nov.. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology: The Proteobacteria (Part C) New York, NY: Springer; 2005 p 1
    [Google Scholar]
  32. Vasilyeva L, Grouzdev D, Koziaeva V, Berestovskaya Y, Novikov A et al. Prosthecodimorpha staleyi gen. nov., sp. nov., novel prosthecate bacteria within the family Ancalomicrobiaceae and reclassification of the polyphyletic genus Prosthecomicrobium. Microbiology 2022; 91:479–488
    [Google Scholar]
  33. Noh H-J, Baek K, Hwang CY, Shin SC, Hong SG et al. Lichenihabitans psoromatis gen nov. sp. nov., a member of a novel lineage (Lichenihabitantaceae fam. nov.) within the order of Rhizobiales isolated from Antarctic lichen. Int J Syst Evol Microbiol 2019; 69:3837–3842
    [Google Scholar]
  34. Pankratov TA, Grouzdev DS, Patutina EO, Kolganova TV, Suzina NE et al. Lichenibacterium ramalinae gen. nov, sp. nov., Lichenibacterium minor sp. nov., the first endophytic, beta-carotene producing bacterial representatives from lichen thalli and the proposal of the new family Lichenibacteriaceae within the order Rhizobiales. Antonie van Leeuwenhoek 2020; 113:477–489
    [Google Scholar]
  35. Ma T, Xue H, Piao C, Jiang N, Li Y. Phylogenomic reappraisal of the family Rhizobiaceae at the genus and species levels, including the description of Ectorhizobium quercum gen. nov., sp. nov. Front Microbiol 2023; 14:1207256 [View Article] [PubMed]
    [Google Scholar]
  36. Zou X, Li X, Wang X-M, Chen Q, Gao M et al. Hansschlegelia beijingensis sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic bacterium isolated from watermelon rhizosphere soil. Int J Syst Evol Microbiol 2013; 63:3715–3719 [View Article] [PubMed]
    [Google Scholar]
  37. Yang L-Q, Liu L, Salam N, Xiao M, Kim C-J et al. Chenggangzhangella methanolivorans gen. nov., sp. nov., a member of the family Methylocystaceae, transfer of Methylopila helvetica Doronina et al. 2000 to Albibacter helveticus comb. nov. and emended description of the genus Albibacter. Int J Syst Evol Microbiol 2016; 66:2825–2830 [View Article]
    [Google Scholar]
  38. Imhoff JF. Transfer of Rhodopseudomonas acidophila to the new genus Rhodoblastus as Rhodoblastus acidophilus gen. nov., comb. nov. Int J Syst Evol Microbiol 2001; 51:1863–1866 [View Article] [PubMed]
    [Google Scholar]
  39. Fukuda W, Yamada K, Miyoshi Y, Okuno H, Atomi H et al. Rhodoligotrophos appendicifer gen. nov., sp. nov., an appendaged bacterium isolated from a freshwater Antarctic lake. Int J Syst Evol Microbiol 2012; 62:1945–1950
    [Google Scholar]
  40. Kim Y-S, Jeon YJ, Kim K-H. Salaquimonas pukyongi gen. nov., sp. nov., a novel bacterium within the family Phyllobacteriaceae. Int J Syst Evol Microbiol 2019; 69:3751–3756 [View Article]
    [Google Scholar]
  41. Brenner DJ, O’Connor SP, Winkler HH, Steigerwalt AG. Proposals to unify the genera Bartonella and Rochalimaea, with descriptions of Bartonella quintana comb nov., Bartonella vinsonii comb. nov., Bartonella henselae comb. nov., and Bartonella elizabethae comb. nov., and to remove the family Bartonellaceae from the order Rickettsiales. Int J Syst Bacteriol 1993; 43:777–786
    [Google Scholar]
  42. Alton GG, Forsyth JRL. Brucella. In Baron S. ed Medical Microbiology Galveston (TX): University of Texas Medical Branch at Galveston; 1996 [PubMed]
    [Google Scholar]
  43. Holmes B, Popoff M, Kiredjian M, Kersters K. Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as group Vd. Int J Syst Bacteriol 1988; 38:406–416 [View Article]
    [Google Scholar]
  44. Huang Z, Guo F, Lai Q, Shao Z. Notoacmeibacter marinus gen. nov., sp. nov., isolated from the gut of a limpet and proposal of Notoacmeibacteraceae fam. nov. in the order Rhizobiales of the class Alphaproteobacteria. Int J Syst Evol Microbiol 2017; 67:2527–2531
    [Google Scholar]
  45. Willems A. The family Phyllobacteriaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. eds The Prokaryotes Berlin, Heidelberg: Springer Berlin Heidelberg; pp 355–418
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006328
Loading
/content/journal/ijsem/10.1099/ijsem.0.006328
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error