1887

Abstract

A Gram-stain-negative, aerobic, rod-shaped and halotolerant bacterium, designated as strain ASW11-75, was isolated from intertidal sediments in Qingdao, PR China, and identified using a polyphasic taxonomic approach. Growth of strain ASW11-75 occurred at 10–45 °C (optimum, 37 °C), pH 6.5–9.0 (optimum, pH 8.0) and 0.5–18.0 % NaCl concentrations (optimum, 2.5 %). Phylogenetic analyses based on 16S rRNA gene sequences and 1179 single-copy orthologous clusters indicated that strain ASW11-75 is affiliated with the genus . Strain ASW11-75 showed highest 16S rRNA gene sequence similarity to ‘’ CAU 1620 (98.5 %). The digital DNA–DNA hybridization and average nucleotide identity values between strain ASW11-75 and its closely related strains ( R9SW1, A3d10, ‘’ CAU 1620, R65, Hb8, LZ-8 and ATCC 49840) were 19.8–24.5 % and 76.6–80.7 %, respectively. The predominant cellular fatty acids were C, C 9 and C N alcohol. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminophospholipid and two unidentified lipids. The major isoprenoid quinone was ubiquinone-9. The genomic DNA G+C content was 62.2 mol%. Based on genomic and gene function analysis, strain ASW11-75 had lower protein isoelectric points with higher ratios of acidic residues to basic residues and possessed genes related to ion transport and organic osmoprotectant uptake, implying its potential tolerance to salt. The results of polyphasic characterization indicated strain ASW11-75 represents a novel species, for which the name sp. nov. with the type strain ASW11-75 is proposed. The type strain is ASW11-75 (=KCTC 82497=MCCC 1K05587).

Funding
This study was supported by the:
  • Shanxi Agricultural University (Award 2020BQ39)
    • Principle Award Recipient: YiLi
  • Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (Award 2021L134)
    • Principle Award Recipient: YiLi
  • International Science and Technology Cooperation Program of Shanxi Province (Award 20210302124004)
    • Principle Award Recipient: YiLi
  • National Natural Science Foundation of China (Award 32300115)
    • Principle Award Recipient: YiLi
  • National Natural Science Foundation of China (Award 32300037)
    • Principle Award Recipient: XuanShao
  • Doctoral Research Foundation of Shangqiu Normal University (Award 7001-700168)
    • Principle Award Recipient: XuanShao
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006327
2024-04-09
2024-04-29
Loading full text...

Full text loading...

References

  1. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M et al. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Evol Microbiol 1992; 42:568–576 [View Article] [PubMed]
    [Google Scholar]
  2. Ng HJ, López-Pérez M, Webb HK, Gomez D, Sawabe T et al. Marinobacter salarius sp. nov. and Marinobacter similis sp. nov., isolated from sea water. PLoS One 2014; 9:e106514 [View Article] [PubMed]
    [Google Scholar]
  3. Gorshkova NM, Ivanova EP, Sergeev AF, Zhukova NV, Alexeeva Y et al. Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. Int J Syst Evol Microbiol 2003; 53:2073–2078 [View Article] [PubMed]
    [Google Scholar]
  4. Yoo Y, Lee H, Kwon B-O, Khim JS, Baek S et al. Marinobacter halodurans sp. nov., a halophilic bacterium isolated from sediment of a salt flat. Int J Syst Evol Microbiol 2020; 70:6294–6300 [View Article] [PubMed]
    [Google Scholar]
  5. Cui Z, Lai Q, Dong C, Shao Z. Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. Environ Microbiol 2008; 10:2138–2149 [View Article] [PubMed]
    [Google Scholar]
  6. Guo B, Gu J, Ye Y-G, Tang Y-Q, Kida K et al. Marinobacter segnicrescens sp. nov., a moderate halophile isolated from benthic sediment of the South China Sea. Int J Syst Evol Microbiol 2007; 57:1970–1974 [View Article] [PubMed]
    [Google Scholar]
  7. Yoon JH, Yeo SH, Kim IG, Oh TK. Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2004; 54:1799–1803 [View Article] [PubMed]
    [Google Scholar]
  8. Ahmad W, Zheng Y, Li Y, Sun W, Hu Y et al. Marinobacter salinexigens sp. nov., a marine bacterium isolated from hadal seawater of the Mariana Trench. Int J Syst Evol Microbiol 2020; 70:3794–3800 [View Article] [PubMed]
    [Google Scholar]
  9. Zhuang D-C, Chen Y-G, Zhang Y-Q, Tang S-K, Wu X-L et al. Marinobacter zhanjiangensis sp. nov., a marine bacterium isolated from sea water of a tidal flat of the South China Sea. Antonie van Leeuwenhoek 2009; 96:295–301 [View Article] [PubMed]
    [Google Scholar]
  10. Lian FB, Chen XY, Jiang S, Li GY, Du ZJ. Marinobacter orientalis sp. nov., a thiosulfate-oxidizing bacterium isolated from a marine solar saltern. Antonie van Leeuwenhoek 2021; 114:765–775 [View Article]
    [Google Scholar]
  11. Kim JO, Lee HJ, Han SI, Whang KS. Marinobacter halotolerans sp. nov., a halophilic bacterium isolated from a saltern crystallizing pond. Int J Syst Evol Microbiol 2017; 67:460–465 [View Article] [PubMed]
    [Google Scholar]
  12. Edwards KJ, Rogers DR, Wirsen CO, McCollom TM. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic alpha- and gamma-proteobacteria from the deep sea. Appl Environ Microbiol 2003; 69:2906–2913 [View Article] [PubMed]
    [Google Scholar]
  13. Yakimov MM, Giuliano L, Crisafi E, Chernikova TN, Timmis KN et al. Microbial community of a saline mud volcano at San Biagio-Belpasso, Mt. Etna (Italy). Environ Microbiol 2002; 4:249–256 [View Article] [PubMed]
    [Google Scholar]
  14. Abed RMM, Zein B, Al-Thukair A, de Beer D. Phylogenetic diversity and activity of aerobic heterotrophic bacteria from a hypersaline oil-polluted microbial mat. Syst Appl Microbiol 2007; 30:319–330 [View Article] [PubMed]
    [Google Scholar]
  15. Brito EMS, Guyoneaud R, Goñi-Urriza M, Ranchou-Peyruse A, Verbaere A et al. Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Res Microbiol 2006; 157:752–762 [View Article] [PubMed]
    [Google Scholar]
  16. Deppe U, Richnow HH, Michaelis W, Antranikian G. Degradation of crude oil by an arctic microbial consortium. Extremophiles 2005; 9:461–470 [View Article] [PubMed]
    [Google Scholar]
  17. Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 1997; 63:3068–3078 [View Article] [PubMed]
    [Google Scholar]
  18. Mikucki JA, Priscu JC. Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl Environ Microbiol 2007; 73:4029–4039 [View Article] [PubMed]
    [Google Scholar]
  19. Huu NB, Denner EBM, Ha DTC, Wanner G, Stan-Lotter H. Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Evol Microbiol 1999; 49:367–375 [View Article]
    [Google Scholar]
  20. Márquez MC, Ventosa A. Marinobacter hydrocarbonoclasticus Gauthier et al. 1992 and Marinobacter aquaeolei Nguyen et al. 1999 are heterotypic synonyms. Int J Syst Evol Microbiol 2005; 55:1349–1351 [View Article] [PubMed]
    [Google Scholar]
  21. Shivaji S, Gupta P, Chaturvedi P, Suresh K, Delille D. Marinobacter maritimus sp. nov., a psychrotolerant strain isolated from sea water off the subantarctic Kerguelen islands. Int J Syst Evol Microbiol 2005; 55:1453–1456 [View Article] [PubMed]
    [Google Scholar]
  22. Green DH, Bowman JP, Smith EA, Gutierrez T, Bolch CJS. Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. Int J Syst Evol Microbiol 2006; 56:523–527 [View Article] [PubMed]
    [Google Scholar]
  23. Handley KM, Lloyd JR. Biogeochemical implications of the ubiquitous colonization of marine habitats and redox gradients by Marinobacter species. Front Microbiol 2013; 4:136 [View Article] [PubMed]
    [Google Scholar]
  24. Cruz BN, Neuer S. Particle-associated bacteria differentially influence the aggregation of the marine diatom Minutocellus polymorphus. ISME Commun 2022; 2:73 [View Article] [PubMed]
    [Google Scholar]
  25. Tran NAT, Tamburic B, Evenhuis CR, Seymour JR. Bacteria-mediated aggregation of the marine phytoplankton Thalassiosira weissflogii and Nannochloropsis oceanica. J Appl Phycol 2020; 32:3735–3748 [View Article]
    [Google Scholar]
  26. Gärdes A, Kaeppel E, Shehzad A, Seebah S, Teeling H et al. Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism. Stand Genomic Sci 2010; 3:97–107 [View Article] [PubMed]
    [Google Scholar]
  27. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  28. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  31. Pardi F, Guillemot S, Gascuel O. Robustness of phylogenetic inference based on minimum evolution. Bull Math Biol 2010; 72:1820–1839 [View Article] [PubMed]
    [Google Scholar]
  32. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  33. Komagata K, Suzuki K-I. Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 1987; 19:161–207
    [Google Scholar]
  34. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res 2017; 27:768–777 [View Article] [PubMed]
    [Google Scholar]
  35. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  36. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  37. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genom 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  38. Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 2000; 16:276–277 [View Article] [PubMed]
    [Google Scholar]
  39. Yu NY, Wagner JR, Laird MR, Melli G, Rey S et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010; 26:1608–1615 [View Article] [PubMed]
    [Google Scholar]
  40. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  41. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  42. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF et al. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinform 2011; 12:124 [View Article] [PubMed]
    [Google Scholar]
  43. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  44. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992; 8:275–282 [View Article] [PubMed]
    [Google Scholar]
  45. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  46. Romanenko LA, Schumann P, Rohde M, Zhukova NV, Mikhailov VV et al. Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 2005; 55:143–148 [View Article] [PubMed]
    [Google Scholar]
  47. Rani S, Koh HW, Kim H, Rhee SK, Park SJ. Marinobacter salinus sp. nov., a moderately halophilic bacterium isolated from a tidal flat environment. Int J Syst Evol Microbiol 2017; 67:205–211 [View Article] [PubMed]
    [Google Scholar]
  48. Yang Q, Feng Q, Zhang B-P, Gao J-J, Sheng Z et al. Marinobacter alexandrii sp. nov., a novel yellow-pigmented and algae growth-promoting bacterium isolated from marine phycosphere microbiota. Antonie van Leeuwenhoek 2021; 114:709–718 [View Article] [PubMed]
    [Google Scholar]
  49. Shieh WY, Jean WD, Lin Y-T, Tseng M. Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Can J Microbiol 2003; 49:244–252 [View Article] [PubMed]
    [Google Scholar]
  50. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article]
    [Google Scholar]
  51. Mongodin EF, Nelson KE, Daugherty S, Deboy RT, Wister J et al. The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci U S A 2005; 102:18147–18152 [View Article] [PubMed]
    [Google Scholar]
  52. Burg MB, Ferraris JD. Intracellular organic osmolytes: function and regulation. J Biol Chem 2008; 283:7309–7313 [View Article] [PubMed]
    [Google Scholar]
  53. Vargas C, Argandoña M, Reina-Bueno M, Rodríguez-Moya J, Fernández-Aunión C et al. Unravelling the adaptation responses to osmotic and temperature stress in Chromohalobacter salexigens, a bacterium with broad salinity tolerance. Saline Syst 2008; 4:14 [View Article] [PubMed]
    [Google Scholar]
  54. Wargo MJ. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Appl Environ Microbiol 2013; 79:2112–2120 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006327
Loading
/content/journal/ijsem/10.1099/ijsem.0.006327
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error