1887

Abstract

An aerobic methanotroph was isolated from a secondary sedimentation tank of a wastewater treatment plant and designated strain OY6. Cells of OY6 were Gram-stain-negative, pink-pigmented, motile rods and contained an intracytoplasmic membrane structure typical of type I methanotrophs. OY6 could grow at a pH range of 4.5–7.5 (optimum pH 6.5) and at temperatures ranging from 20 °C to 37 °C (optimum 30 °C). The major cellular fatty acids were C, Cω7/Cω6 and Cω5; the predominant respiratory quinone was MQ-8. The genome size was 5.41 Mbp with a DNA G+C content of 51.7 mol%. OY6 represents a member of the family of the class and displayed 95.74–99.64 % 16S rRNA gene sequence similarity to the type strains of species of the genus . Whole-genome comparisons based on average nucleotide identity (ANI) and digital DNA–DNA hybridisation (dDDH) confirmed that OY6 should be classified as representing a novel species. The most closely related type strain was EbB, with 16S rRNA gene sequence similarity, ANI by (ANIb), ANI by MUMmer (ANIm) and dDDH values of 99.64, 90.46, 91.92 and 44.5 %, respectively. OY6 possessed genes encoding both the particulate methane monooxygenase enzyme and the soluble methane monooxygenase enzyme. It grew only on methane or methanol as carbon sources. On the basis of phenotypic, genetic and phylogenetic data, strain OY6 represents a novel species within the genus for which the name sp. nov. is proposed, with strain OY6 (=GDMCC 1.4114=KCTC 8159=LMG 33371) as the type strain.

Funding
This study was supported by the:
  • Chongqing Natural Science Foundation (Award CSTB2022NSCQ-MSX0524)
    • Principle Award Recipient: NotApplicable
  • Shanghai Committee of Science and Technology (Award 21ZR1435500)
    • Principle Award Recipient: NotApplicable
  • Shanghai Committee of Science and Technology (Award 19390743300)
    • Principle Award Recipient: NotApplicable
  • Zhejiang Province ecological Environment Research and Promotion Project (Award 2020HT0009)
    • Principle Award Recipient: NotApplicable
  • Open Project Program of State Key Laboratory for Biology of Plant Diseases and Insect Pests (Award SKLOF202201)
    • Principle Award Recipient: NotApplicable
  • Open Project Program of State Key Laboratory of Rice Biology (Award 20190109)
    • Principle Award Recipient: NotApplicable
  • National Natural Science Foundation of China (Award 32302294)
    • Principle Award Recipient: NotApplicable
  • National Natural Science Foundation of China (Award 32200142)
    • Principle Award Recipient: NotApplicable
  • National Natural Science Foundation of China (Award 32272479)
    • Principle Award Recipient: BoZhu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006321
2024-04-12
2024-04-29
Loading full text...

Full text loading...

References

  1. Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N et al. Improved attribution of climate forcing to emissions. Science 2009; 326:716–718 [View Article] [PubMed]
    [Google Scholar]
  2. Haque MN. Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants. J Anim Sci Technol 2018; 60:1–10 [View Article] [PubMed]
    [Google Scholar]
  3. Syed R, Saggar S, Tate K, Rehm BHA. Does acidification of a soil biofilter compromise its methane-oxidising capacity?. Biol Fertil Soils 2016; 52:573–583 [View Article]
    [Google Scholar]
  4. Wu Y-M, Yang J, Fan X-L, Fu S-F, Sun M-T et al. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria. Bioresour Technol 2017; 231:124–128 [View Article] [PubMed]
    [Google Scholar]
  5. Bodelier PLE, Steenbergh AK. Interactions between methane and nitrogen cycling; current metagenomic studies and future trends. In Marco D. eds Metagenomics of the Microbial Nitrogen Cycle: Theory, Methods and Applications Norfolk: Caister Academic Press; 2014 pp 33–63
    [Google Scholar]
  6. Kalyuzhnaya MG, Gomez OA, Murrell JC. The methane-oxidizing bacteria (methanotrophs). In Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes vol 2019 pp 245–278 [View Article]
    [Google Scholar]
  7. Semrau JD, DiSpirito AA, Yoon S. Methanotrophs and copper. FEMS Microbiol Rev 2010; 34:496–531 [View Article] [PubMed]
    [Google Scholar]
  8. Bowman JP, Sly LI, Nichols PD, Hayward AC. Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 1993; 43:735–753 [View Article]
    [Google Scholar]
  9. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 2010; 464:543–548 [View Article] [PubMed]
    [Google Scholar]
  10. Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A et al. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 2009; 1:293–306 [View Article] [PubMed]
    [Google Scholar]
  11. Sangwan P, Kovac S, Davis KER, Sait M, Janssen PH. Detection and cultivation of soil Verrucomicrobia. Appl Environ Microbiol 2005; 71:8402–8410 [View Article] [PubMed]
    [Google Scholar]
  12. Bussmann I, Horn F, Hoppert M, Klings K-W, Saborowski A. Methylomonas albis sp. nov. and Methylomonas fluvii sp. nov.: two cold-adapted methanotrophs from the river Elbe and emended description of the species Methylovulum psychrotolerans.. Syst Appl Microbiol 2021; 44:126248 [View Article]
    [Google Scholar]
  13. Tikhonova EN, Suleimanov RZ, Miroshnikov KK, Oshkin IY, Belova SE et al. Methylomonas rapida sp. nov., a novel species of fast-growing, carotenoid-producing obligate methanotrophs with high biotechnological potential. Syst Appl Microbiol 2023; 46:126398 [View Article] [PubMed]
    [Google Scholar]
  14. Hoefman S, Heylen K, De Vos P. Methylomonas lenta sp. nov., a methanotroph isolated from manure and a denitrification tank. Int J Syst Evol Microbiol 2014; 64:1210–1217 [View Article] [PubMed]
    [Google Scholar]
  15. Ogiso T, Ueno C, Dianou D, Huy TV, Katayama A et al. Methylomonas koyamae sp. nov., a type I methane-oxidizing bacterium from floodwater of a rice paddy field. Int J Syst Evol Microbiol 2012; 62:1832–1837 [View Article] [PubMed]
    [Google Scholar]
  16. Danilova OV, Kulichevskaya IS, Rozova ON, Detkova EN, Bodelier PLE et al. Methylomonas paludis sp. nov., the first acid-tolerant member of the genus Methylomonas, from an acidic wetland. Int J Syst Evol Microbiol 2013; 63:2282–2289 [View Article] [PubMed]
    [Google Scholar]
  17. Kalyuzhnaya MG, Khmelenina VN, Kotelnikova S, Holmquist L, Pedersen K. Methylomonas scandinavica sp. nov., a new methanotrophic psychrotrophic bacterium isolated from deep igneous rock ground water of Sweden. Syst Appl Microbiol 1999; 22:565–572 [View Article] [PubMed]
    [Google Scholar]
  18. Bowman JP, Sly LI, Cox JM, Hayward AC. Methylomonas fodinarum sp. nov. and Methylomonas aurantiaca sp.nov.: two closely related type I obligate methanotrophs. Syst Appl Microbiol 1990; 13:279–287 [View Article]
    [Google Scholar]
  19. Brindha RK, Vasudevan N. Methane oxidation capacity of methanotrophs isolated from different soil ecosystems. Int J Environ Sci Technol 2018; 15:1931–1940 [View Article]
    [Google Scholar]
  20. Kwon M, Ho A, Yoon S. Novel approaches and reasons to isolate methanotrophic bacteria with biotechnological potentials: recent achievements and perspectives. Appl Microbiol Biotechnol 2019; 103:1–8 [View Article] [PubMed]
    [Google Scholar]
  21. Davamani V, Parameswari E, Arulmani S. Mitigation of methane gas emissions in flooded paddy soil through the utilization of methanotrophs. Sci Total Environ 2020; 726:138570 [View Article] [PubMed]
    [Google Scholar]
  22. Hanson RS, Hanson TE. Methanotrophic bacteria. Microbiol Rev 1996; 60:439–471 [View Article] [PubMed]
    [Google Scholar]
  23. Puri AW, Owen S, Chu F, Chavkin T, Beck DAC et al. Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense. Appl Environ Microbiol 2015; 81:1775–1781 [View Article] [PubMed]
    [Google Scholar]
  24. Hoefman S, van der Ha D, De Vos P, Boon N, Heylen K. Miniaturized extinction culturing is the preferred strategy for rapid isolation of fast-growing methane-oxidizing bacteria. Microb Biotechnol 2012; 5:368–378 [View Article] [PubMed]
    [Google Scholar]
  25. Awala SI, Bellosillo LA, Gwak J-H, Nguyen N-L, Kim S-J et al. Methylococcus geothermalis sp. nov., a methanotroph isolated from a geothermal field in the Republic of Korea. Int J Syst Evol Microbiol 2020; 70:5520–5530 [View Article] [PubMed]
    [Google Scholar]
  26. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note 101 vol 101 Newark, DE: MIDI inc; 1990
    [Google Scholar]
  27. Khalifa A, Lee CG, Ogiso T, Ueno C, Dianou D et al. Methylomagnum ishizawai gen. nov., sp. nov., a mesophilic type I methanotroph isolated from rice rhizosphere. Int J Syst Evol Microbiol 2015; 65:3527–3534 [View Article] [PubMed]
    [Google Scholar]
  28. Minnikin DE, Abdolrahimzadeh H. Thin-layer chromatography of bacterial lipids on sodium acetate-impregnated silica gel. J Chromatogr 1971; 63:452–454 [View Article] [PubMed]
    [Google Scholar]
  29. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  30. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  31. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  32. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  33. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  34. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  35. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [View Article] [PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  37. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  38. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  39. Goloboff PA, Farris JS, Nixon KC. TNT, a free program for phylogenetic analysis. Cladistics 2008; 24:774–786 [View Article]
    [Google Scholar]
  40. Zhang D-F, Cui X-W, Zhao Z, Zhang A-H, Huang J-K et al. Sphingomonas hominis sp. nov., isolated from hair of a 21-year-old girl. Antonie van Leeuwenhoek 2020; 113:1523–1530 [View Article] [PubMed]
    [Google Scholar]
  41. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  42. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  43. Felsenstein J. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution 1981; 35:1229–1242 [View Article] [PubMed]
    [Google Scholar]
  44. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  45. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nature communications 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  46. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  47. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinform 2009; 10:1–9 [View Article] [PubMed]
    [Google Scholar]
  48. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  49. Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 2017; 33:2946–2947 [View Article] [PubMed]
    [Google Scholar]
  50. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  51. Xie J, Chen Y, Cai G, Cai R, Hu Z et al. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res 2023; 51:W587–W592 [View Article] [PubMed]
    [Google Scholar]
  52. Frindte K, Maarastawi SA, Lipski A, Hamacher J, Knief C. Characterization of the first rice paddy cluster I isolate, Methyloterricola oryzae gen. nov., sp. nov. and amended description of Methylomagnum ishizawai. Int J Syst Evol Microbiol 2017; 67:4507–4514 [View Article] [PubMed]
    [Google Scholar]
  53. Tavormina PL, Kellermann MY, Antony CP, Tocheva EI, Dalleska NF et al. Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti. Mol Microbiol 2017; 103:242–252 [View Article] [PubMed]
    [Google Scholar]
  54. van Teeseling MCF, Pol A, Harhangi HR, van der Zwart S, Jetten MSM et al. Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl Environ Microbiol 2014; 80:6782–6791 [View Article] [PubMed]
    [Google Scholar]
  55. Graham LL, Harris R, Villiger W, Beveridge TJ. Freeze-substitution of Gram-negative eubacteria: general cell morphology and envelope profiles. J Bacteriol 1991; 173:1623–1633 [View Article] [PubMed]
    [Google Scholar]
  56. Zhu P, Cheng M, Pei D, Liu Y, Yan X. Methylomonas rhizoryzae sp. nov., a type I methanotroph isolated from the rhizosphere soil of rice. Antonie van Leeuwenhoek 2020; 113:2167–2176 [View Article] [PubMed]
    [Google Scholar]
  57. Kalyuzhnaya MG, Lamb AE, McTaggart TL, Oshkin IY, Shapiro N et al. Draft genome sequences of gammaproteobacterial methanotrophs isolated from Lake Washington sediment. Genome Announc 2015; 3:00103–00115 [View Article] [PubMed]
    [Google Scholar]
  58. Romanovskaya VA, Rokitko PV, Shilin SO, Malashenko YR. Emended description of Methylomonas rubra sp. nov.. Microbiology 2006; 75:689–693 [View Article]
    [Google Scholar]
  59. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  60. Colston SM, Fullmer MS, Beka L, Lamy B, Gogarten JP et al. Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case. mBio 2014; 5:e02136 [View Article] [PubMed]
    [Google Scholar]
  61. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  62. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A et al. Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 2000; 146:2385–2394 [View Article] [PubMed]
    [Google Scholar]
  63. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  64. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints2167–9843 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006321
Loading
/content/journal/ijsem/10.1099/ijsem.0.006321
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error