1887

Abstract

Two Gram-negative, non-spore-forming, non-motile, non-flagellated bacteria, designated strains D6 and DH64, were isolated from surface water of the Pacific Ocean. For strain D6, growth occurred at 10–40 °C, pH 5.5–9.0 and in the presence of 0–8.0 % NaCl (w/v). For strain DH64, growth occurred at 10–40 °C, pH 5.5–8.5 and in the presence of 0.5–8.0 % NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains D6 and DH64 both belonged to the genera , with the highest sequence identities to JCM 17757 (98.2 %) and JCM 11811 (98.6 %), respectively. The 16S rRNA gene sequence identity between strains D6 and DH64 was 95.9 %. The average amino acid identity and digital DNA–DNA hybridization values between the two strains and the nearest phylogenetic neighbours were 66.7–93.3 % and 16.1–38.5 %, respectively. The major respiratory quinone of both strains was menaquinone-6. The major polar lipid was phosphatidylethanolamine. The major fatty acids were identified similarly as iso-C G, iso-C and iso-C 3-OH. The genomic G+C contents of strains D6 and DH64 were determined to be 45.5 and 42.6 mol%, respectively. The combined genotypic and phenotypic data show that the strains represent two novel species within genera , for which the names sp. nov. and sp. nov. are proposed, with type strains D6 (=MCCC M28982=KCTC 92604) and DH64 (=MCCC M28986=KCTC 92975).

Funding
This study was supported by the:
  • National Key Research and Development Program of China (Award 2022YFC2804005)
    • Principle Award Recipient: Ge-YiFu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006316
2024-04-03
2024-05-04
Loading full text...

Full text loading...

References

  1. Bae SS, Kwon KK, Yang SH, Lee H-S, Kim S-J et al. Flagellimonas eckloniae gen. nov., sp. nov., a mesophilic marine bacterium of the family Flavobacteriaceae, isolated from the rhizosphere of Ecklonia kurome. Int J Syst Evol Microbiol 2007; 57:1050–1054 [View Article] [PubMed]
    [Google Scholar]
  2. Kim J, Kim KH, Chun BH, Khan SA, Jeon CO. Flagellimonas algicola sp. nov., isolated from a marine red alga, Asparagopsis taxiformis. Curr Microbiol 2020; 77:294–299 [View Article] [PubMed]
    [Google Scholar]
  3. Choi S, Lee JH, Kang JW, Choe HN, Seong CN. Flagellimonas aquimarina sp. nov., and transfer of Spongiibacterium flavum Yoon and Oh 2012 and S. pacificum Gao et al. 2015 to the genus Flagellimonas Bae et al. 2007 as Flagellimonas flava comb. nov. and F. pacifica comb. nov., respectively. Int J Syst Evol Microbiol 2018; 68:3266–3272 [View Article] [PubMed]
    [Google Scholar]
  4. Shin T-G, Park J-S. Flagellimonas hymeniacidonis sp. nov., isolated from the sponge Hymeniacidon sinapium. Curr Microbiol 2021; 78:1061–1067 [View Article] [PubMed]
    [Google Scholar]
  5. Liang J, Yin Q, Zheng X, Wang Y, Song Z-M et al. Muricauda onchidii sp. nov., isolated from a marine invertebrate from South China sea, and transfers of Flagellimonas algicola, Flagellimonas pacifica and Flagellimonas maritima to Muricauda algicola comb. nov., Muricauda parva nom. nov. and Muricauda aurantiaca nom. nov., respectively, and emended description of the genus Muricauda. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  6. García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T et al. Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front Microbiol 2019; 10:2083 [View Article] [PubMed]
    [Google Scholar]
  7. Moon Y-L, Kim K-H, Park J-S. Muricauda myxillae sp. nov., isolated from a marine sponge (Myxilla rosacea), and reclassification of Flagellimonas hymeniacidonis as Muricauda symbiotica nom. nov. Int J Syst Evol Microbiol 2023; 73:11 [View Article]
    [Google Scholar]
  8. Deshmukh UB, Oren A. Proposal of Allomuricauda gen. nov. and Allofranklinella gen. nov. as replacement names for the illegitimate prokaryotic generic names Muricauda and Franklinella, respectively. Int J Syst Evol Microbiol 2023; 73: [View Article] [PubMed]
    [Google Scholar]
  9. Molinari Novoa EA, Deshmukh UB, Oren A. Reclassification of Allomuricauda and Muricauda species as members of the genus Flagellimonas Bae et al. 2007 and emended description of the genus Flagellimonas. Int J Syst Evol Microbiol 2024; 74: [View Article]
    [Google Scholar]
  10. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  11. Kim JM, Jin HM, Jeon CO. Muricauda taeanensis sp. nov., isolated from a marine tidal flat. Int J Syst Evol Microbiol 2013; 63:2672–2677 [View Article] [PubMed]
    [Google Scholar]
  12. Yoon J-H, Lee M-H, Oh T-K, Park Y-H. Muricauda flavescens sp. nov. and Muricauda aquimarina sp. nov., isolated from a salt lake near Hwajinpo Beach of the East Sea in Korea, and emended description of the genus Muricauda. Int J Syst Evol Microbiol 2005; 55:1015–1019 [View Article] [PubMed]
    [Google Scholar]
  13. Zhao S, Liu R, Lai Q, Shao Z. Muricauda aurea sp. nov. and Muricauda profundi sp. nov., two marine bacteria isolated from deep sea sediment of Pacific Ocean. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  14. Guo L-L, Wu D, Sun C, Cheng H, Xu X-W et al. Muricauda maritima sp. nov., Muricauda aequoris sp. nov. and Muricauda oceanensis sp. nov., three marine bacteria isolated from seawater. Int J Syst Evol Microbiol 2020; 70:6240–6250 [View Article] [PubMed]
    [Google Scholar]
  15. Bruns A. Muricauda. BMSAB 20151–8 [View Article]
    [Google Scholar]
  16. Stackebrandt E, Goodfellow M. Nucleic Acid Techniques in Bacterial Systematics Wiley; 1991
    [Google Scholar]
  17. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  18. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  21. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  22. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  25. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  26. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:1–15 [View Article] [PubMed]
    [Google Scholar]
  27. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 2021; 38:5825–5829 [View Article] [PubMed]
    [Google Scholar]
  28. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article] [PubMed]
    [Google Scholar]
  29. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  30. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  31. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  32. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  33. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  35. Dong X, Cai M. Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation); 2001
    [Google Scholar]
  36. Jennens MG. The methyl red test in peptone media. J Gen Microbiol 1954; 10:121–126 [View Article] [PubMed]
    [Google Scholar]
  37. Xu L, Huo Y-Y, Li Z-Y, Wang C-S, Oren A et al. Chryseobacterium profundimaris sp. nov., a new member of the family Flavobacteriaceae isolated from deep-sea sediment. Antonie van Leeuwenhoek 2015; 107:979–989 [View Article] [PubMed]
    [Google Scholar]
  38. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note 101 vol 101 Newark: MIDI inc; 1990
    [Google Scholar]
  39. Komagata K, Suzuki K-I. 4 lipid and cell-wall analysis in bacterial systematics. In Methods In Microbiol Elsevier; 1988 pp 161–207
    [Google Scholar]
  40. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  41. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  42. Liu S-Q, Sun Q-L, Sun Y-Y, Yu C, Sun L. Muricauda iocasae sp. nov., isolated from deep sea sediment of the South China Sea. Int J Syst Evol Microbiol 2018; 68:2538–2544 [View Article] [PubMed]
    [Google Scholar]
  43. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:1–8 [View Article] [PubMed]
    [Google Scholar]
  44. Zheng J, Ge Q, Yan Y, Zhang X, Huang L et al. dbCAN3: automated carbohydrate-active enzyme and substrate annotation. Nucleic Acids Res 2023; 51:W115–W121 [View Article] [PubMed]
    [Google Scholar]
  45. Martens EC, Koropatkin NM, Smith TJ, Gordon JI. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem 2009; 284:24673–24677 [View Article] [PubMed]
    [Google Scholar]
  46. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000; 28:27–30 [View Article] [PubMed]
    [Google Scholar]
  47. Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci 2019; 28:1947–1951 [View Article] [PubMed]
    [Google Scholar]
  48. Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res 2023; 51:D587–D592 [View Article] [PubMed]
    [Google Scholar]
  49. Prabhu S, Rekha PD, Arun AB. Zeaxanthin biosynthesis by members of the genus Muricauda. Pol J Microbiol 2014; 63:115–119 [PubMed]
    [Google Scholar]
  50. Oh J, Choe H, Kim BK, Kim KM. Complete genome of a coastal marine bacterium Muricauda lutaonensis KCTC 22339(T). Mar Genomics 2015; 23:51–53 [View Article] [PubMed]
    [Google Scholar]
  51. Zhang Y, Gao Y, Pei J, Cao J, Xie Z et al. Muricauda hadalis sp. nov., a novel piezophile isolated from hadopelagic water of the Mariana Trench and reclassification of Muricauda antarctica as a later heterotypic synonym of Muricauda teanensis. Int J Syst Evol Microbiol 2020; 70:4315–4320 [View Article] [PubMed]
    [Google Scholar]
  52. Dong B, Zhu S, Chen T, Ren N, Chen X et al. Muricauda oceani sp. nov., isolated from the East Pacific Ocean. Int J Syst Evol Microbiol 2020; 70:3839–3844 [View Article] [PubMed]
    [Google Scholar]
  53. Yoon J-H, Kang S-J, Jung Y-T, Oh T-K. Muricauda lutimaris sp. nov., isolated from a tidal flat of the Yellow Sea. Int J Syst Evol Microbiol 2008; 58:1603–1607 [View Article] [PubMed]
    [Google Scholar]
  54. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article] [PubMed]
    [Google Scholar]
  55. Lee S-Y, Park S, Oh T-K, Yoon J-H. Muricauda beolgyonensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2012; 62:1134–1139 [View Article] [PubMed]
    [Google Scholar]
  56. Yoon B-J, Oh D-C. Spongiibacterium flavum gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from the marine sponge Halichondria oshoro, and emended descriptions of the genera Croceitalea and Flagellimonas. Int J Syst Evol Microbiol 2012; 62:1158–1164 [View Article] [PubMed]
    [Google Scholar]
  57. Su Y, Yang X, Wang Y, Liu Y, Ren Q et al. Muricauda marina sp. nov., isolated from marine snow of Yellow Sea. Int J Syst Evol Microbiol 2017; 67:2446–2451 [View Article] [PubMed]
    [Google Scholar]
  58. Wang Y, Yang X, Liu J, Wu Y, Zhang X-H. Muricauda lutea sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2017; 67:1064–1069 [View Article] [PubMed]
    [Google Scholar]
  59. Liu L, Yu M, Zhou S, Fu T, Sun W et al. Muricauda alvinocaridis sp. nov., isolated from shrimp gill from the Okinawa Trough. Int J Syst Evol Microbiol 2020; 70:1666–1671 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006316
Loading
/content/journal/ijsem/10.1099/ijsem.0.006316
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error