1887

Abstract

A novel moderately halophilic, Gram-stain-negative and facultatively anaerobic bacterium, designated as strain TBZ242, was isolated from water of Urmia Lake in the Azerbaijan region of Iran. The cells were found to be rod-shaped and motile by a single polar flagellum, producing circular and yellowish colonies. The strain could grow in the presence of 0.5–10 % (w/v) NaCl (optimum, 2.5–5 %). The temperature and pH ranges for growth were 15–45 °C (optimum 30 °C) and pH 7.0–11.0 (optimum pH 8.0) on marine agar. The 16S rRNA gene sequence analysis revealed that strain TBZ242 belonged to the genus , showing the highest similarities to DG893 (98.8 %), F01 (98.8 %), R9SW1 (98.5 %), PJ-16 (98.4 %), W62 (98.0 %) and JB2H27 (98.0 %). The 16S rRNA and core-genome phylogenetic trees showed that strain TBZ242 formed a distinct branch, closely related to a subclade accommodating , , , , , and , within the genus . Average nucleotide identity and digital DNA–DNA hybridization values between strain TBZ242 and the type strains of the related species of were ≤85.0 and 28.6 %, respectively, confirming that strain TBZ242 represents a distinct species. The major cellular fatty acids of strain TBZ242 were C and C 7/C ω6 and the quinone was ubiquinone Q-9. The genomic DNA G+C content of strain TBZ242 is 57.2 mol%. Based on phenotypic, chemotaxonomic and genomic data, strain TBZ242 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is TBZ242 (= CECT 30649 = IBRC-M 11466). Genomic fragment recruitment analysis showed that this species prefers aquatic saline environments with intermediate salinities, being detected on metagenomic databases of Lake Meyghan (Iran) with 5 and 18 % salinity, respectively.

Funding
This study was supported by the:
  • Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Award BIO-213)
    • Principle Award Recipient: VentosaAntonio
  • Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía (Award P20_01066)
    • Principle Award Recipient: VentosaAntonio
  • MICIN/AEI/10.13039/501100011033 (Award PID2020-118136GB-I00)
    • Principle Award Recipient: VentosaAntonio
  • Tabriz University of Medical Sciences (Award IR.TBZMED.VCR.REC.1400.320)
    • Principle Award Recipient: Saeid HejaziMohammad
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006308
2024-04-03
2024-05-02
Loading full text...

Full text loading...

References

  1. Liao H, Lin X, Li Y, Qu M, Tian Y. Reclassification of the taxonomic framework of orders Cellvibrionales, Oceanospirillales, Pseudomonadales, and Alteromonadales in class Gammaproteobacteria through phylogenomic tree analysis. mSystems 2020; 5:e00543-20 [View Article] [PubMed]
    [Google Scholar]
  2. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M et al. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 1992; 42:568–576 [View Article] [PubMed]
    [Google Scholar]
  3. Parte AC. LPSN - List of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  4. Han J-R, Ling S-K, Yu W-N, Chen G-J, Du Z-J. Marinobacter salexigens sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2017; 67:4595–4600 [View Article] [PubMed]
    [Google Scholar]
  5. Zhang M-X, Li A-Z, Wu Q, Yao Q, Zhu H-H. Marinobacter denitrificans sp. nov., isolated from marine sediment of southern Scott Coast, Antarctica. Int J Syst Evol Microbiol 2020; 70:2918–2924 [View Article] [PubMed]
    [Google Scholar]
  6. Nie Y, Su X, Wu D, Zhang R, Wang R et al. Marinobacter caseinilyticus sp. nov., isolated from saline soil. Curr Microbiol 2021; 78:1045–1052 [View Article] [PubMed]
    [Google Scholar]
  7. Yi E, Shao Z, Li G, Liang X, Zhou M. Marinobacter mangrovi sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2021; 71:005079 [View Article] [PubMed]
    [Google Scholar]
  8. Lian F-B, Chen X-Y, Jiang S, Li G-Y, Du Z-J. Marinobacter orientalis sp. nov., a thiosulfate-oxidizing bacterium isolated from a marine solar saltern. Antonie van Leeuwenhoek 2021; 114:765–775 [View Article] [PubMed]
    [Google Scholar]
  9. Liu Q, Xamxidin M, Sun C, Cheng H, Meng F-X et al. Marinobacter fuscus sp. nov., a marine bacterium of Gammaproteobacteria isolated from surface seawater. Int J Syst Evol Microbiol 2018; 68:3156–3162 [View Article] [PubMed]
    [Google Scholar]
  10. Li G, Wang S, Gai Y, Liu X, Lai Q et al. Marinobacter changyiensis, sp. nov., isolated from offshore sediment. Int J Syst Evol Microbiol 2020; 70:3004–3011 [View Article] [PubMed]
    [Google Scholar]
  11. Yoo Y, Lee H, Kwon B-O, Khim JS, Baek S et al. Marinobacter halodurans sp. nov., a halophilic bacterium isolated from sediment of a salt flat. Int J Syst Evol Microbiol 2020; 70:6294–6300 [View Article] [PubMed]
    [Google Scholar]
  12. Boujida N, Palau M, Charfi S, Manresa À, Skali Senhaji N et al. Marinobacter maroccanus sp. nov., a moderately halophilic bacterium isolated from a saline soil. Int J Syst Evol Microbiol 2019; 69:227–234 [View Article] [PubMed]
    [Google Scholar]
  13. Zhong Z-P, Liu Y, Liu H-C, Wang F, Zhou Y-G et al. Marinobacter halophilus sp. nov., a halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2015; 65:2838–2845 [View Article] [PubMed]
    [Google Scholar]
  14. Rafieyan S, Amoozegar MA, Makzum S, Salimi-Ashtiani M, Nikou MM et al. Marinobacter iranensis sp. nov., a slightly halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2023; 73:6083 [View Article] [PubMed]
    [Google Scholar]
  15. Yang W-L, An M-L, He W-H, Luo X, Zhu L et al. Marinobacter panjinensis sp. nov., a moderately halophilic bacterium isolated from sea tidal flat environment. Int J Syst Evol Microbiol 2023; 73:5625 [View Article] [PubMed]
    [Google Scholar]
  16. Anh HTH, Shahsavari E, Bott NJ, Ball AS. The application of Marinobacter hydrocarbonoclasticus as a bioaugmentation agent for the enhanced treatment of non-sterile fish wastewater. J Environ Manage 2021; 291:112658 [View Article] [PubMed]
    [Google Scholar]
  17. Cui Z, Gao W, Xu G, Luan X, Li Q et al. Marinobacter aromaticivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from sea sediment. Int J Syst Evol Microbiol 2016; 66:353–359 [View Article] [PubMed]
    [Google Scholar]
  18. Miklaszewska M, Dittrich-Domergue F, Banaś A, Domergue F. Wax synthase MhWS2 from Marinobacter hydrocarbonoclasticus: substrate specificity and biotechnological potential for wax ester production. Appl Microbiol Biotechnol 2018; 102:4063–4074 [View Article] [PubMed]
    [Google Scholar]
  19. Handley KM, Lloyd JR. Biogeochemical implications of the ubiquitous colonization of marine habitats and redox gradients by Marinobacter species. Front Microbiol 2013; 4:136 [View Article] [PubMed]
    [Google Scholar]
  20. Kazemi E, Tarhriz V, Hejazi MS, Amoozegar MA. Isolation and characterization of halophilic and halotolerant bacteria from Urmia Lake after the recent drought disaster in 2015. Curr Biotechnol 2020; 9:111–119 [View Article]
    [Google Scholar]
  21. Vahed SZ, Forouhandeh H, Hassanzadeh S, Klenk H-P, Hejazi MA et al. Isolation and characterization of halophilic bacteria from Urmia Lake in Iran. Microbiol 2011; 80:826–833 [PubMed]
    [Google Scholar]
  22. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  23. Tarhriz V, Nematzadeh G, Mohammadzadeh F, Hejazi MS, Rahimi ES. Isolation and characterization of some aquatic bacteria from Qurugol Lake in Azerbaijan under aerobic conditions. Adv Environ Biol 2011; 5:3173–3179
    [Google Scholar]
  24. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  28. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article] [PubMed]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evol 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  30. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–IN1 [View Article]
    [Google Scholar]
  31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  32. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  33. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  34. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  35. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5:113 [View Article] [PubMed]
    [Google Scholar]
  36. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  37. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  38. Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007; 23:127–128 [View Article] [PubMed]
    [Google Scholar]
  39. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  40. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  41. Auch AF, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article] [PubMed]
    [Google Scholar]
  42. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article] [PubMed]
    [Google Scholar]
  43. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article] [PubMed]
    [Google Scholar]
  44. Hamidi-Razi H, Mazaheri M, Carvajalino-Fernández M, Vali-Samani J. Investigating the restoration of Lake Urmia using a numerical modelling approach. J Great Lakes Res 2019; 45:87–97 [View Article]
    [Google Scholar]
  45. Lanyi B. Classical and rapid identification methods for mediacally important bacteria. In Methods in Microbiology Elsevier; 1988 pp 1–67
    [Google Scholar]
  46. Wenting R, Montazersaheb S, Khan SA, Kim HM, Tarhriz V et al. Halomonas azerica sp. nov., isolated from Urmia Lake in Iran. Curr Microbiol 2021; 78:3299–3306 [View Article]
    [Google Scholar]
  47. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note 101 Newark, DE, USA: MIDI Inc; 1990
    [Google Scholar]
  48. MIDI Sherlock Microbial Identification System Operating Manual. Version 6.1 Newark, DE: MIDI Inc; 2008 p 1
    [Google Scholar]
  49. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  50. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article] [PubMed]
    [Google Scholar]
  51. López-Pérez M, Ghai R, Leon MJ, Rodríguez-Olmos Á, Copa-Patiño JL et al. Genomes of “Spiribacter”, a streamlined, successful halophilic bacterium. BMC Genomics 2013; 14:787 [View Article] [PubMed]
    [Google Scholar]
  52. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  53. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  54. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  55. Klappenbach JA, Goris J, Vandamme P, Coenye T, Konstantinidis KT et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  56. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  57. Green DH, Bowman JP, Smith EA, Gutierrez T, Bolch CJS. Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. Int J Syst Evol Microbiol 2006; 56:523–527 [View Article] [PubMed]
    [Google Scholar]
  58. Zhang Y, Zhong X-C, Xu W, Lu D-C, Zhao J-X et al. Marinobacter vulgaris sp. nov., a moderately halophilic bacterium isolated from a marine solar saltern. Int J Syst Evol Microbiol 2020; 70:450–456 [View Article]
    [Google Scholar]
  59. Vera-Gargallo B, Navarro-Sampedro L, Carballo M, Ventosa A. Metagenome sequencing of prokaryotic microbiota from two hypersaline soils of the Odiel Salt Marshes in Huelva, Southwestern Spain. Genome Announc 2018; 6:e00140-18 [View Article] [PubMed]
    [Google Scholar]
  60. Fernández AB, Ghai R, Martin-Cuadrado A-B, Sánchez-Porro C, Rodriguez-Valera F et al. Prokaryotic taxonomic and metabolic diversity of an intermediate salinity hypersaline habitat assessed by metagenomics. FEMS Microbiol Ecol 2014; 88:623–635 [View Article] [PubMed]
    [Google Scholar]
  61. Fernández AB, León MJ, Vera B, Sánchez-Porro C, Ventosa A. Metagenomic sequence of prokaryotic microbiota from an intermediate-salinity pond of a saltern in Isla Cristina, Spain. Genome Announc 2014; 2:e00045-14 [View Article] [PubMed]
    [Google Scholar]
  62. Ghai R, Pašić L, Fernández AB, Martin-Cuadrado A-B, Mizuno CM et al. New abundant microbial groups in aquatic hypersaline environments. Sci Rep 2011; 1:135 [View Article] [PubMed]
    [Google Scholar]
  63. Ng HJ, López-Pérez M, Webb HK, Gomez D, Sawabe T et al. Marinobacter salarius sp. nov. and Marinobacter similis sp. nov., isolated from sea water. PLoS One 2014; 9:e106514 [View Article] [PubMed]
    [Google Scholar]
  64. Naghoni A, Emtiazi G, Amoozegar MA, Cretoiu MS, Stal LJ et al. Microbial diversity in the hypersaline Lake Meyghan, Iran. Sci Rep 2017; 7:11522 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006308
Loading
/content/journal/ijsem/10.1099/ijsem.0.006308
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error