1887

Abstract

Halophilic archaea of the class are the most salt-requiring prokaryotes within the domain . In 1997, minimal standards for the description of new taxa in the order were proposed. From then on, the taxonomy of the class provides an excellent example of how changing concepts on prokaryote taxonomy and the development of new methods were implemented. The last decades have witnessed a rapid expansion of the number of described taxa within the class coinciding with the era of genome sequencing development. The current members of the International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of propose these revisions to the recommended minimal standards and encourage the use of advanced technologies in the taxonomic description of members of the . Most previously required and some recommended minimal standards for the description of new taxa in the class were retained in the present revision, but changes have been proposed in line with the new methodologies. In addition to the 16S rRNA gene, the gene is an important molecular marker for the identification of members of the . Phylogenomic analysis based on concatenated conserved, single-copy marker genes is required to infer the taxonomic status of new taxa. The overall genome relatedness indexes have proven to be determinative in the classification of the taxa within the class . Average nucleotide identity, digital DNA–DNA hybridization, and average amino acid identity values should be calculated for rigorous comparison among close relatives.

Keyword(s): Archaea , Halobacteria , phylogeny and taxonomy
Funding
This study was supported by the:
  • National Science and Technology Fundamental Resources Investigation Program of China (Award 2021FY100900)
    • Principle Award Recipient: Heng-LinCui
  • Junta de Andalucía (Award P20_01066 and BIO-213)
    • Principle Award Recipient: AntonioVentosa
  • Junta de Andalucía (Award P20_01066 and BIO-213)
    • Principle Award Recipient: CristinaSanchez-Porro
  • Junta de Andalucia (Award P20_01066 and BIO-213)
    • Principle Award Recipient: Rafaelde la Haba
  • National Science and technology fundamental resources investigation program of China (Award 2019FY100700)
    • Principle Award Recipient: Heng-LinCui
  • Innovative Research Group Project of the National Natural Science Foundation of China (Award 32070003)
    • Principle Award Recipient: JingHou
  • Innovative Research Group Project of the National Natural Science Foundation of China (Award 32070003)
    • Principle Award Recipient: Heng-LinCui
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006290
2024-03-08
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/3/ijsem006290.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006290&mimeType=html&fmt=ahah

References

  1. Oren A, Ventosa A, Kamekura M. Halobacteria. In Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Inc., in association with Bergey’s Manual Trust; 2017
    [Google Scholar]
  2. Cui H-L, Dyall-Smith ML. Cultivation of halophilic archaea (class Halobacteria) from thalassohaline and athalassohaline environments. Mar Life Sci Technol 2021; 3:243–251 [View Article] [PubMed]
    [Google Scholar]
  3. Durán-Viseras A, Sánchez-Porro C, Viver T, Konstantinidis KT, Ventosa A. Discovery of the streamlined haloarchaeon Halorutilus salinus, comprising a new order widespread in hypersaline environments across the world. mSystems 2023; 8:e0119822 [View Article] [PubMed]
    [Google Scholar]
  4. Cui C, Han D, Hou J, Cui H-L. Genome-based classification of the class Halobacteria and description of Haladaptataceae fam. nov. and Halorubellaceae fam. nov. Int J Syst Evol Microbiol 2023; 73:005984 [View Article]
    [Google Scholar]
  5. Oren A, Arahal DR, Ventosa A. International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Halobacteria and Subcommittee on the Taxonomy of Halomonadaceae. Minutes of the joint open meeting, 28 June 2022, Alicante, Spain. Int J Syst Evol Microbiol 2022; 72:005584 [View Article] [PubMed]
    [Google Scholar]
  6. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  7. Minegishi H, Echigo A, Nagaoka S, Kamekura M, Usami R. Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. Int J Syst Evol Microbiol 2010; 60:2513–2516 [View Article] [PubMed]
    [Google Scholar]
  8. Antunes A, Taborda M, Huber R, Moissl C, Nobre MF et al. Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 2008; 58:215–220 [View Article] [PubMed]
    [Google Scholar]
  9. Sorokin DY, Kublanov IV, Yakimov MM, Rijpstra W, Sinninghe Damsté JS. Halanaeroarchaeum sulfurireducens gen. nov., sp. nov., the first obligately anaerobic sulfur-respiring haloarchaeon, isolated from a hypersaline lake. Int J Syst Evol Microbiol 2016; 66:2377–2381 [View Article]
    [Google Scholar]
  10. Sorokin DY, Messina E, Smedile F, Roman P, Sinnighe Damsté JS et al. Discovery of anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats. ISME J 2017; 11:1245–1260 [View Article] [PubMed]
    [Google Scholar]
  11. Sorokin DY, Yakimov M, Messina E, Merkel AY, Koenen M et al. Natranaeroarchaeum sulfidigenes gen. nov., sp. nov., carbohydrate-utilizing sulfur-respiring haloarchaeon from hypersaline soda lakes, a member of a new family Natronoarchaeaceae fam. nov. in the order Halobacteriales. Syst Appl Microbiol 2022; 45:126356 [View Article] [PubMed]
    [Google Scholar]
  12. Oren A, Arahal DR, Ventosa A. Emended descriptions of genera of the family Halobacteriaceae. Int J Syst Evol Microbiol 2009; 59:637–642 [View Article] [PubMed]
    [Google Scholar]
  13. Echigo A, Minegishi H, Shimane Y, Kamekura M, Itoh T et al. Halomicroarcula pellucida gen. nov., sp. nov., a non-pigmented, transparent-colony-forming, halophilic archaeon isolated from solar salt. Int J Syst Evol Microbiol 2013; 63:3556–3562 [View Article]
    [Google Scholar]
  14. Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. Microbiology 2017; 163:623–645 [View Article] [PubMed]
    [Google Scholar]
  15. Wu ZP, Zheng XW, Sun YP, Wang BB, Hou J et al. Halocatena marina sp. nov., a novel filamentous halophilic archaeon isolated from marine tidal flat and emended description of the genus Halocatena. Extremophiles 2023; 27:7 [View Article] [PubMed]
    [Google Scholar]
  16. Tang S-K, Zhi X-Y, Zhang Y, Makarova KS, Liu B-B et al. Cellular differentiation into hyphae and spores in halophilic archaea. Nat Commun 2023; 14:1827 [View Article] [PubMed]
    [Google Scholar]
  17. Oren A, Ventosa A, Grant W. Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Evol Microbiol 1997; 47:233–238 [View Article]
    [Google Scholar]
  18. Oren A. Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematics. Int J Syst Evol Microbiol 2012; 62:263–271 [View Article] [PubMed]
    [Google Scholar]
  19. Infante-Domínguez C, de la Haba RR, Corral P, Sanchez-Porro C, Arahal DR et al. Genome-based analyses reveal a synonymy among Halorubrum distributum Zvyagintseva and Tarasov 1989; Oren and Ventosa 1996, Halorubrum terrestre Ventosa et al. 2004, Halorubrum arcis Xu et al. 2007 and Halorubrum litoreum Cui et al. 2007. Emended description of Halorubrum distributum Zvyagintseva and Tarasov 1989; Oren and Ventosa 1996. Int J Syst Evol Microbiol 2020; 70:1698–1705 [View Article]
    [Google Scholar]
  20. Oren A, Ventosa A. International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Halobacteria. Minutes of the closed meeting, 12 May 2022, via Zoom. Int J Syst Evol Microbiol 2022; 72:005499 [View Article]
    [Google Scholar]
  21. Whitman WB, Bull CT, Busse H-J, Fournier P-E, Oren A et al. Request for revision of the Statutes of the International Committee on Systematics of Prokaryotes. Int J Syst Evol Microbiol 2019; 69:584–593 [View Article] [PubMed]
    [Google Scholar]
  22. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  23. Cui H-L, Zhou P-J, Oren A, Liu S-J. Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. Extremophiles 2009; 13:31–37 [View Article] [PubMed]
    [Google Scholar]
  24. Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R et al. Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B′ (rpoB′) gene. Int J Syst Evol Microbiol 2010; 60:2398–2408 [View Article] [PubMed]
    [Google Scholar]
  25. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  26. Rinke C, Chuvochina M, Mussig AJ, Chaumeil P-A, Davín AA et al. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat Microbiol 2021; 6:946–959 [View Article] [PubMed]
    [Google Scholar]
  27. de la Haba RR, Minegishi H, Kamekura M, Shimane Y, Ventosa A. Phylogenomics of haloarchaea: the controversy of the genera Natrinema-Haloterrigena. Front Microbiol 2021; 12:740909 [View Article] [PubMed]
    [Google Scholar]
  28. Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML. Cultivation of Walsby’s square haloarchaeon. FEMS Microbiol Lett 2004; 238:469–473 [View Article] [PubMed]
    [Google Scholar]
  29. Bolhuis H, te Poele EM, Rodriguez-Valera F. Isolation and cultivation of Walsby’s square archaeon. Environ Microbiol 2004; 6:1287–1291 [View Article] [PubMed]
    [Google Scholar]
  30. Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z et al. Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 2007; 57:387–392 [View Article] [PubMed]
    [Google Scholar]
  31. Kocur M, Hodgkiss W. Taxonomic status of the genus Halococcus Schoop. Int J Syst Bacteriol 1973; 23:151–156 [View Article]
    [Google Scholar]
  32. Dussault HP. An improved technique for staining red halophilic bacteria. J Bacteriol 1955; 70:484–485 [View Article] [PubMed]
    [Google Scholar]
  33. The Halohandbook. Protocols for haloarchaeal genetics Version 7.2; 2009 https://haloarchaea.com/wp-content/uploads/2018/10/Halohandbook_2009_v7.3mds.pdf
  34. Cohen S, Oren A, Shilo M. The divalent cation requirement of Dead Sea halobacteria. Arch Microbiol 1983; 136:184–190 [View Article]
    [Google Scholar]
  35. Sorokin DY, Yakimov M, Messina E, Merkel AY, Bale NJ et al. Natronolimnobius sulfurireducens sp. nov. and Halalkaliarchaeum desulfuricum gen. nov., sp. nov., the first sulfur-respiring alkaliphilic haloarchaea from hypersaline alkaline lakes. Int J Syst Evol Microbiol 2019; 69:2662–2673 [View Article] [PubMed]
    [Google Scholar]
  36. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  37. Mizuki T, Kamekura M, DasSarma S, Fukushima T, Usami R et al. Ureases of extreme halophiles of the genus Haloarcula with a unique structure of gene cluster. Biosci Biotechnol Biochem 2004; 68:397–406 [View Article] [PubMed]
    [Google Scholar]
  38. Cui H-L, Tohty D, Liu H-C, Liu S-J, Oren A et al. Natronorubrum sulfidifaciens sp. nov., an extremely haloalkaliphilic archaeon isolated from Aiding salt lake in Xin-Jiang, China. Int J Syst Evol Microbiol 2007; 57:738–740 [View Article] [PubMed]
    [Google Scholar]
  39. Cui H-L, Gao X, Sun F-F, Dong Y, Xu X-W et al. Halogranum rubrum gen. nov., sp. nov., a halophilic archaeon isolated from a marine solar saltern. Int J Syst Evol Microbiol 2010; 60:1366–1371 [View Article]
    [Google Scholar]
  40. Torreblanca M, Rodriguez-Valera F, Juez G, Ventosa A, Kamekura M et al. Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 1986; 8:89–99 [View Article]
    [Google Scholar]
  41. Kates M. The phytanyl ether-linked polar lipids and isoprenoid neutral lipids of extremely halophilic bacteria. Prog Chem Fats Other Lipids 1978; 15:301–342 [View Article] [PubMed]
    [Google Scholar]
  42. Yao W, Zhang W, He W, Xiao W, Chen Y et al. Lipidomic chemotaxonomy aligned with phylogeny of Halobacteria. Front Microbiol 2023; 14:1297600 [View Article] [PubMed]
    [Google Scholar]
  43. Trincone A, Nicolaus B, Lama L, De Rosa M, Gambacorta A et al. The glycolipid of Halobacterium sodomense. J Gen Microbiol 1990; 136:2327–2331 [View Article]
    [Google Scholar]
  44. Moldoveanu N, Kates M, Montero CG, Ventosa A. Polar lipids of non-alkaliphilic halococci. Biochim Biophys Acta 1990; 1046:127–135 [View Article] [PubMed]
    [Google Scholar]
  45. Lopalco P, Lobasso S, Babudri F, Corcelli A. Osmotic shock stimulates de novo synthesis of two cardiolipins in an extreme halophilic archaeon. J Lipid Res 2004; 45:194–201 [View Article] [PubMed]
    [Google Scholar]
  46. Lobasso S, Pérez-Davó A, Vitale R, Sánchez MM, Corcelli A. Deciphering archaeal glycolipids of an extremely halophilic archaeon of the genus Halobellus by MALDI-TOF/MS. Chem Phys Lipids 2015; 186:1–8 [View Article] [PubMed]
    [Google Scholar]
  47. Angelini R, Corral P, Lopalco P, Ventosa A, Corcelli A. Novel ether lipid cardiolipins in archaeal membranes of extreme haloalkaliphiles. Biochim Biophys Acta 2012; 1818:1365–1373 [View Article] [PubMed]
    [Google Scholar]
  48. Hunter MIS, Olawoye TL, Saynor DA. The effect of temperature on the growth and lipid composition of the extremely halophilic coccus, Sarcina marina. Antonie van Leeuwenhoek 1981; 47:25–40 [View Article]
    [Google Scholar]
  49. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  50. Corcelli A, Colella M, Mascolo M, Fanizzi FP, Kates M. A novel glycolipid and phospholipid in the purple membrane. Biochemistry 2000; 39:3318–3326 [View Article] [PubMed]
    [Google Scholar]
  51. Cui H-L, Gao X, Yang X, Xu X-W. Halorussus rarus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Extremophiles 2010; 14:493–499 [View Article] [PubMed]
    [Google Scholar]
  52. Vaskovsky VE, Kostetsky EY. Modified spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 1968; 9:396 [View Article] [PubMed]
    [Google Scholar]
  53. Siakotos AN. Analytical separation of nonlipid water soluble substances and gangliosides from other lipids by dextran gel column chromatography. J Am Oil Chem Soc 1965; 42:913–919 [View Article] [PubMed]
    [Google Scholar]
  54. Woese CR, Olsen GJ. Archaebacterial phylogeny: perspectives on the urkingdoms. Syst Appl Microbiol 1986; 7:161–177 [View Article] [PubMed]
    [Google Scholar]
  55. Boucher Y, Douady CJ, Sharma AK, Kamekura M, Doolittle WF. Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J Bacteriol 2004; 186:3980–3990 [View Article] [PubMed]
    [Google Scholar]
  56. Walsh DA, Bapteste E, Kamekura M, Doolittle WF. Evolution of the RNA polymerase B’ subunit gene (rpoB′) in Halobacteriales: a complementary molecular marker to the SSU rRNA gene. Mol Biol Evol 2004; 21:2340–2351 [View Article] [PubMed]
    [Google Scholar]
  57. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  58. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  59. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  60. Gupta RS, Naushad S, Fabros R, Adeolu M. A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov. Antonie van Leeuwenhoek 2016; 109:565–587 [View Article] [PubMed]
    [Google Scholar]
  61. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res 2004; 32:D277–D280 [View Article] [PubMed]
    [Google Scholar]
  62. Sun J, Lu F, Luo Y, Bie L, Xu L et al. OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res 2023; 51:W397–W403 [View Article] [PubMed]
    [Google Scholar]
  63. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr 2016; 4:e1900v1 [View Article]
    [Google Scholar]
  64. Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol 2021; 6:3–6 [View Article] [PubMed]
    [Google Scholar]
  65. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013; 79:7696–7701 [View Article] [PubMed]
    [Google Scholar]
  66. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  67. Meier-Kolthoff JP, Sardà Carbasse J, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  68. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  69. Magrum LJ, Luehrsen KR, Woese CR. Are extreme halophiles actually “bacteria”?. J Mol Evol 1978; 11:1–8 [View Article] [PubMed]
    [Google Scholar]
  70. Oren A, Arahal DR, Göker M, Moore ERB, Rossello-Mora R et al. International Code of Nomenclature of Prokaryotes. Prokaryotic Code (2022 Revision). Int J Syst Evol Microbiol 2023; 73:005585 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006290
Loading
/content/journal/ijsem/10.1099/ijsem.0.006290
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error