1887

Abstract

Two cocci-shaped, facultatively anaerobic, Gram-positive bacteria isolated from the faeces of a pig were designated as strains YH-aer221 and YH-aer222. Analysis of the 16S rRNA gene sequences revealed that the isolates were most closely related to JCM 18035 with 96.6 % similarity. The multi-locus sequence tree revealed that the isolates formed a sub-cluster adjacent to JCM 18035. The average nucleotide identity values for the isolates and their most closely related strains were 71.8 and 71.7 %, respectively; and the digital DNA–DNA hybridization values for the isolates and their most closely related strains were 25.6 and 25.5 %, respectively. The main fatty acids were Cω9, C and C. The cell wall contained the -diaminopimelic acid-based peptidoglycan. The two isolates shared the same metabolic pathways. Isolates YH-aer221 and YH-aer222 harboured the same CRISPR array with 33 and 46 spacers, respectively. Single-genome vs. metagenome analysis showed that the genomes of the isolates were not found in the available metagenome database. Given their chemotaxonomic, phenotypic and phylogenetic properties, YH-aer221 (= KCTC 25571=JCM 35699) and YH-aer222 (=KCTC 25573=JCM 35700) represent a novel taxon. The name sp. nov. is proposed.

Funding
This study was supported by the:
  • Korea Research Institute of Bioscience and Biotechnology (Award KGS1022423)
    • Principle Award Recipient: Young-HyoChang
  • National Research Foundation of Korea (Award 2021R1A2C2009051)
    • Principle Award Recipient: Joong-KiKook
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006284
2024-02-28
2024-12-08
Loading full text...

Full text loading...

References

  1. Williams RE, Hirch A, Cowan ST. Aerococcus, a new bacterial genus. J Gen Microbiol 1953; 8:475–480 [View Article] [PubMed]
    [Google Scholar]
  2. Felis GE, Torriani S, Dellaglio F. Reclassification of Pediococcus urinaeequi (ex Mees 1934) Garvie 1988 as Aerococcus urinaeequi comb. nov. Int J Syst Evol Microbiol 2005; 55:1325–1327 [View Article] [PubMed]
    [Google Scholar]
  3. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  4. Tohno M, Kitahara M, Matsuyama S, Kimura K, Ohkuma M et al. Aerococcus vaginalis sp. nov., isolated from the vaginal mucosa of a beef cow, and emended descriptions of Aerococcus suis, Aerococcus viridans, Aerococcus urinaeequi, Aerococcus urinaehominis, Aerococcus urinae, Aerococcus christensenii and Aerococcus sanguinicola. Int J Syst Evol Microbiol 2014; 64:1229–1236 [View Article] [PubMed]
    [Google Scholar]
  5. Lyagoubi A, Souffi C, Baroiller V, Vallee E. Aerococcus urinae spondylodiscitis: an increasingly described localization. EJIFCC 2020; 31:169–173 [PubMed]
    [Google Scholar]
  6. Vela AI, García N, Latre MV, Casamayor A, Sánchez-Porro C et al. Aerococcus suis sp. nov., isolated from clinical specimens from swine. Int J Syst Evol Microbiol 2007; 57:1291–1294 [View Article] [PubMed]
    [Google Scholar]
  7. Rasmussen M. Aerococcus: an increasingly acknowledged human pathogen. Clin Microbiol Infect 2016; 22:22–27 [View Article] [PubMed]
    [Google Scholar]
  8. Shin Y, Paek J, Kim H, Kook JK, Chang YH. Clostridium vitabionis sp. nov., isolated from the large intestine of a mini-pig. Int J Syst Evol Microbiol 2019; 71: [View Article] [PubMed]
    [Google Scholar]
  9. Paek J, Shin Y, Kook JK, Chang YH. Blautia argi sp. nov., a new anaerobic bacterium isolated from dog faeces. Int J Syst Evol Microbiol 2019; 69:33–38 [View Article] [PubMed]
    [Google Scholar]
  10. Shin Y, Paek J, Kim H, Kook JK, Chang YH. Faecalicatena absiana sp. nov., an obligately anaerobic bacterium from a pig farm faeces dump. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  11. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  12. Retief JD. Phylogenetic analysis using PHYLIP. Methods Mol Biol 2000; 132:243–258 [View Article] [PubMed]
    [Google Scholar]
  13. Paek J, Bai L, Shin Y, Kim H, Kook J-K et al. Description of Paenibacillus dokdonensis sp. nov., a new bacterium isolated from soil. Int J Syst Evol Microbiol 2019; 71: [View Article] [PubMed]
    [Google Scholar]
  14. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  15. Leijh PC, van Zwet TL, ter Kuile MN, van Furth R. Effect of thioglycolate on phagocytic and microbicidal activities of peritoneal macrophages. Infect Immun 1984; 46:448–452 [View Article] [PubMed]
    [Google Scholar]
  16. Shin Y, Paek J, Kim H, Kook J-K, Kim J-S et al. Absicoccus porci gen. nov., sp. nov., a member of the family Erysipelotrichaceae isolated from pig faeces. Int J Syst Evol Microbiol 2020; 70:732–737 [View Article]
    [Google Scholar]
  17. Bai L, Paek J, Shin Y, Park HY, Chang YH. Lacticaseibacillus absianus sp. nov., isolated from the cecum of a mini-pig. Int J Syst Evol Microbiol 2019; 71:e004752 [View Article] [PubMed]
    [Google Scholar]
  18. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note 101 vol 101 Newark, DE: MIDI, Inc; 2001
    [Google Scholar]
  19. Schumann P. Peptidoglycan structure. In Rainey F, Oren A. eds Methods in Microbiology Academic Press; 2011 pp 101–129
    [Google Scholar]
  20. Kajitani R, Yoshimura D, Okuno M, Minakuchi Y, Kagoshima H et al. Platanus-allee is a de novo haplotype assembler enabling a comprehensive access to divergent heterozygous regions. Nat Commun 2019; 10:1702 [View Article] [PubMed]
    [Google Scholar]
  21. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  22. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  24. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  25. Chen I-MA, Chu K, Palaniappan K, Ratner A, Huang J et al. The IMG/M data management and analysis system v.7: content updates and new features. Nucleic Acids Res 2023; 51:D723–D732 [View Article] [PubMed]
    [Google Scholar]
  26. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2020; 36:2251–2252 [View Article] [PubMed]
    [Google Scholar]
  27. Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V et al. RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res 2021; 49:D1020–D1028 [View Article] [PubMed]
    [Google Scholar]
  28. Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for cas proteins. Nucleic Acids Res 2018; 46:W246–W251 [View Article] [PubMed]
    [Google Scholar]
  29. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  30. Spry C, Kirk K, Saliba KJ. Coenzyme a biosynthesis: an antimicrobial drug target. FEMS Microbiol Rev 2008; 32:56–106 [View Article] [PubMed]
    [Google Scholar]
  31. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 2020; 18:67–83 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006284
Loading
/content/journal/ijsem/10.1099/ijsem.0.006284
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error