1887

Abstract

A Gram-stain-positive bacterium capable of resisting 5.0 mM glufosinate, designated strain YX-27, was isolated from a sludge sample collected from a factory in Wuxi, Jiangsu, PR China. Cells were rod-shaped, facultatively anaerobic, endospore-forming, and motile by peritrichous flagella. Growth was observed at 15–42 °C (optimum at 30 °C), pH 4.0–8.0 (optimum pH 7.0–7.5) and with 0–2.5% NaCl (w/v; optimum, 0.5 %). Strain YX-27 could tolerate up to 6.0 mM glufosinate. Strain YX-27 showed the highest 16S rRNA gene sequence similarity to TB2019 (96.17 %), followed by DSM 1539 (96.15 %), S27 (96.04 %), 7124 (96.02 %) and DSM 14472 (95.87 %). The phylogenetic tree based on genome and 16S rRNA gene sequences indicated that strain YX-27 was clustered in the genus but formed a separate clade. The genome size of YX-27 was 5.22 Mb with a G+C content of 57.5 mol%. The average nucleotide identity and digital DNA–DNA hybridization values between the genomes of strain YX-27 and 12 closely related type strains ranged from 70.8 to 74.8% and 19.8 to 23.0 %, respectively. The major cellular fatty acids were C, anteiso-C and iso-C. The major polar lipids were one diphosphatidylglycerol, one phosphatidylethanolamine, one phosphatidylglycerol, one phospholipid, four aminophospholipids and four unidentified lipids. The predominant respiratory quinone was MK-7. Based on phylogenetic, genomic, chemotaxonomic and phenotypic data, strain YX-27 was considered to represent a novel species for which the name sp. nov. is proposed, with YX-27 (=MCCC 1K08803= KCTC 43611) as the type strain.

Funding
This study was supported by the:
  • Science and Technology Support Program of Jiangsu Province (Award BM2022019)
    • Principle Award Recipient: JianHe
  • Jiangsu Provincial Agricultural Science and Technology Independent Innovation Fund (Award CX(22)3023)
    • Principle Award Recipient: JianHe
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006259
2024-02-02
2024-05-20
Loading full text...

Full text loading...

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993; 64:253–260 [View Article] [PubMed]
    [Google Scholar]
  2. Tong S, Wang L-W, Sun Y-C, Khan MS, Gao J-L et al. Paenibacillus apii sp. nov., a novel nifH gene-harbouring species isolated from the rhizospheres of vegetable plants grown in different regions of northern China. Int J Syst Evol Microbiol 2020; 70:5531–5538 [View Article] [PubMed]
    [Google Scholar]
  3. Siddiqi MZ, Siddiqi MH, Im WT, Kim Y-J, Yang D-C. Paenibacillus kyungheensis sp. nov., isolated from flowers of magnolia. Int J Syst Evol Microbiol 2015; 65:3959–3964 [View Article] [PubMed]
    [Google Scholar]
  4. Roux V, Raoult D. Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int J Syst Evol Microbiol 2004; 54:1049–1054 [View Article] [PubMed]
    [Google Scholar]
  5. Li Q, Li Y, Liu X, Chen S. Paenibacillus sinensis sp. nov., a nitrogen-fixing species isolated from plant rhizospheres. Antonie van Leeuwenhoek 2022; 115:7–18 [View Article]
    [Google Scholar]
  6. Lee KC, Kim KK, Kim J-S, Kim D-S, Ko S-H et al. Paenibacillus baekrokdamisoli sp. nov., isolated from soil of crater lake. Int J Syst Evol Microbiol 2016; 66:1937–1942 [View Article] [PubMed]
    [Google Scholar]
  7. Kim JH, Kang H, Kim W. Paenibacillus doosanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014; 64:1271–1277 [View Article] [PubMed]
    [Google Scholar]
  8. Kämpfer P, Lipski A, McInroy JA, Clermont D, Lamothe L et al. Paenibacillus auburnensis sp. nov. and Paenibacillus pseudetheri sp. nov., isolated from the rhizosphere of Zea mays. Int J Syst Evol Microbiol 2023; 73:73 [View Article]
    [Google Scholar]
  9. Jin H-J, Lv J, Chen S-F. Paenibacillus sophorae sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sophora japonica. Int J Syst Evol Microbiol 2011; 61:767–771 [View Article] [PubMed]
    [Google Scholar]
  10. Clermont D, Gomard M, Hamon S, Bonne I, Fernandez J-C et al. Paenibacillus faecis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2015; 65:4621–4626 [View Article] [PubMed]
    [Google Scholar]
  11. Tang Q-Y, Yang N, Wang J, Xie Y-Q, Ren B et al. Paenibacillus algorifonticola sp. nov., isolated from a cold spring. Int J Syst Evol Microbiol 2011; 61:2167–2172 [View Article] [PubMed]
    [Google Scholar]
  12. Hong Y-Y, Ma Y-C, Zhou Y-G, Gao F, Liu H-C et al. Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus. Int J Syst Evol Microbiol 2009; 59:2656–2661 [View Article] [PubMed]
    [Google Scholar]
  13. Jin HJ, Lv J, Chen SF. Paenibacillus sophorae sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sophora japonica. Int J Syst Evol Microbiol 2011; 61:767–771 [View Article] [PubMed]
    [Google Scholar]
  14. Nelson DM, Glawe AJ, Labeda DP, Cann IKO, Mackie RI. Paenibacillus tundrae sp. nov. and Paenibacillus xylanexedens sp. nov., psychrotolerant, xylan-degrading bacteria from Alaskan tundra. Int J Syst Evol Microbiol 2009; 59:1708–1714 [View Article] [PubMed]
    [Google Scholar]
  15. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Paenibacillus xylanisolvens sp. nov., a xylan-degrading bacterium from soil. Int J Syst Evol Microbiol 2011; 61:160–164 [View Article] [PubMed]
    [Google Scholar]
  16. Wang L, Baek S-H, Cui Y, Lee H-G, Lee S-T. Paenibacillus sediminis sp. nov., a xylanolytic bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2012; 62:1284–1288 [View Article] [PubMed]
    [Google Scholar]
  17. Chung YR, Kim CH, Hwang I, Chun J. Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int J Syst Evol Microbiol 2000; 50 Pt 4:1495–1500 [View Article] [PubMed]
    [Google Scholar]
  18. Kim D-S, Bae C-Y, Jeon J-J et al. Paenibacillus elgii sp. nov., with broad antimicrobial activity; 2004; 542031–2035
  19. Bonny S. Genetically modified herbicide-tolerant crops, weeds, and herbicides: overview and impact. Environ Manage 2016; 57:31–48 [View Article] [PubMed]
    [Google Scholar]
  20. Green JM. Current state of herbicides in herbicide-resistant crops. Pest Manag Sci 2014; 70:1351–1357 [View Article] [PubMed]
    [Google Scholar]
  21. Bernard SM, Habash DZ. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol 2009; 182:608–620 [View Article] [PubMed]
    [Google Scholar]
  22. Lea PJ, Miflin BJ. Nitrogen assimilation and its relevance to crop improvement. Annu Plant Rev Volume 2011; 42:1–40 [View Article]
    [Google Scholar]
  23. Corbett JL, Askew SD, Thomas WE, Wilcut JW. Weed efficacy evaluations for bromoxynil, glufosinate, glyphosate, pyrithiobac, and sulfosate. Weed Technol 2004; 18:443–453 [View Article]
    [Google Scholar]
  24. Culpepper AS, York AC. Weed management in glufosinate-resistant corn (Zea mays). Weed Technol 1999; 13:324–333 [View Article]
    [Google Scholar]
  25. Norris JL, Shaw DR, Snipes CE. Influence of row spacing and residual herbicides on weed control in glufosinate-resistant soybean (Glycine max). Weed Technol 2002; 16:319–325 [View Article]
    [Google Scholar]
  26. Steckel GJ, Wax LM, Simmons FW, Phillips WH II. Glufosinate efficacy on annual weeds is influenced by rate and growth stage. Weed Technol 1997; 11:484–488 [View Article]
    [Google Scholar]
  27. Ke Z, Wang S, Zhu W, Zhang F, Qiao W et al. Genetic bioaugmentation with triclocarban-catabolic plasmid effectively removes triclocarban from wastewater. Environ Res 2022; 214:113921 [View Article] [PubMed]
    [Google Scholar]
  28. Becerra SC, Roy DC, Sanchez CJ, Christy RJ, Burmeister DM. An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue. BMC Res Notes 2016; 9:216 [View Article] [PubMed]
    [Google Scholar]
  29. Tagliavia M, Salamone M, Bennici C, Quatrini P, Cuttitta A. A modified culture medium for improved isolation of marine vibrios. Microbiologyopen 2019; 8:e00835 [View Article] [PubMed]
    [Google Scholar]
  30. Sasser M, Kunitsky C, Jackoway G, Ezzell JW, Teska JD et al. Identification of Bacillus anthracis from culture using gas chromatographic analysis of fatty acid methyl esters. J AOAC Int 2005; 88:178–181 [PubMed]
    [Google Scholar]
  31. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  32. Collins M. Isoprenoid Quinone analyses in bacterial classification and identification. Soc Appl Bacteriol Tech Ser 1985267–287
    [Google Scholar]
  33. Komagata K, Suzuki K-I. 4 lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988161–207
    [Google Scholar]
  34. Tindall B. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  35. Sambrook J, Fritsch FE, Maniatis T. Molecular Cloning: A Laboratory Manual Cold Spring Harbor Press; 1982
    [Google Scholar]
  36. Gao J-L, Sun P, Wang X-M, Lv F-Y, Mao X-J et al. Rhizobium wenxiniae sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2017; 67:2798–2803 [View Article] [PubMed]
    [Google Scholar]
  37. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  38. Liu J, Mawhorter R, Liu N, Santichaivekin S, Bush E et al. Maximum parsimony reconciliation in the DTLOR model. BMC Bioinformatics 2021; 22:394 [View Article] [PubMed]
    [Google Scholar]
  39. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  40. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  41. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  42. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res 2017; 27:768–777 [View Article] [PubMed]
    [Google Scholar]
  43. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  44. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  45. Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep 2016; 6:24373 [View Article] [PubMed]
    [Google Scholar]
  46. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article] [PubMed]
    [Google Scholar]
  47. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  48. Na S-I, Kim YO, Yoon S-H, Ha S, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  49. Liu H, Lu L, Wang S, Yu M, Cao X et al. Paenibacillus tianjinensis sp. nov., isolated from corridor air. Int J Syst Evol Microbiol 2021; 71:71 [View Article] [PubMed]
    [Google Scholar]
  50. Suominen I, Spröer C, Kämpfer P, Rainey FA, Lounatmaa K et al. Paenibacillus stellifer sp. nov., a cyclodextrin-producing species isolated from paperboard. Int J Syst Evol Microbiol 2003; 53:1369–1374 [View Article] [PubMed]
    [Google Scholar]
  51. Ma YC, Chen SF. Paenibacillus forsythiae sp. nov., a nitrogen-fixing species isolated from rhizosphere soil of Forsythia mira. Int J Syst Evol Microbiol 2008; 58:319–323 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006259
Loading
/content/journal/ijsem/10.1099/ijsem.0.006259
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error