1887

Abstract

During the analysis of a collection of strains linked to an outbreak in an intensive care unit at King Faisal Specialist Hospital and Research Center in 2019, one isolate (CFS3442) was identified phenotypically as . However, whole-genome sequencing revealed its true identity as a member of the genus , distinct from both and . The isolate demonstrated: (i) a significant phylogenetic distance from ; (ii) considerable genomic differences from several reference strains and other species; and (iii) unique phenotypic characteristics. Based on the combined geno- and phenotypic data, we propose that this isolate represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is CFS3442 (=NCTC 14921=LMG 33162).

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006250
2024-02-23
2024-05-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/2/ijsem006250.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006250&mimeType=html&fmt=ahah

References

  1. Aeron A, Dubey RC, Maheshwari DK. Characterization of a plant-growth-promoting non-nodulating endophytic bacterium (Stenotrophomonas maltophilia) from the root nodules of Mucuna utilis var. capitata L. (Safed Kaunch). Can J Microbiol 2020; 66:670–677 [View Article] [PubMed]
    [Google Scholar]
  2. Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L et al. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 2009; 7:514–525 [View Article] [PubMed]
    [Google Scholar]
  3. Ulrich K, Kube M, Becker R, Schneck V, Ulrich A. Genomic analysis of the endophytic Stenotrophomonas strain 169 reveals features related to plant-growth promotion and stress tolerance. Front Microbiol 2021; 12:687463 [View Article] [PubMed]
    [Google Scholar]
  4. Brooke JS. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 2012; 25:2–41 [View Article] [PubMed]
    [Google Scholar]
  5. Brooke JS, Di Bonaventura G, Berg G, Martinez J-L. A multidisciplinary look at Stenotrophomonas maltophilia: an emerging multi-drug-resistant global opportunistic pathogen. Frontiers Media SA 20171511 [View Article]
    [Google Scholar]
  6. Almaghrabi RS, Macori G, Sheridan F, McCarthy SC, Floss-Jones A et al. Whole genome sequencing of resistance and virulence genes in multi-drug resistant Pseudomonas aeruginosa. J Infect Public Health 2024; 17:299–307 [View Article] [PubMed]
    [Google Scholar]
  7. Andrews S. Fastqc: a quality control tool for high throughput sequence data; 2010 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
  8. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  9. De Coster W, Rademakers R, Alkan C. NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics 2023; 39:btad311 [View Article] [PubMed]
    [Google Scholar]
  10. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  11. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  12. Seemann T. ABRicate: mass screening of contigs for antimicrobial and virulence genes. Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia; 2018 https://github.com/tseemann/abricate accessed 5 January 2024
  13. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  14. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  15. Teeling H, Meyerdierks A, Bauer M, Amann R, Glöckner FO. Application of tetranucleotide frequencies for the assignment of genomic fragments. Environ Microbiol 2004; 6:938–947 [View Article] [PubMed]
    [Google Scholar]
  16. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  17. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  18. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  19. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  20. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102:2567–2572 [View Article] [PubMed]
    [Google Scholar]
  21. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 2014; 15:524 [View Article] [PubMed]
    [Google Scholar]
  22. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  23. Bay P, Wodarg MGD, Holt JG, Krieg NR, Sneath PHA et al. eds Bergey’s Manual of Determinative Bacteriology Lippincott Williams and Wilkins; 1994
    [Google Scholar]
  24. EUCAST Breakpoint tables for interpretation of Mics and zone diameters version 13.1; 2023
  25. Hussain HI, Aqib AI, Seleem MN, Shabbir MA, Hao H et al. Genetic basis of molecular mechanisms in β-lactam resistant Gram-negative bacteria. Microb Pathog 2021; 158:105040 [View Article] [PubMed]
    [Google Scholar]
  26. Woegerbauer M, Kuffner M, Domingues S, Nielsen KM. Involvement of aph(3′)-IIa in the formation of mosaic aminoglycoside resistance genes in natural environments. Front Microbiol 2015; 6:442 [View Article] [PubMed]
    [Google Scholar]
  27. Adegoke AA, Stenström TA, Okoh AI. Stenotrophomonas maltophilia as an emerging ubiquitous pathogen: looking beyond contemporary antibiotic therapy. Front Microbiol 2017; 8:2276 [View Article] [PubMed]
    [Google Scholar]
  28. Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S et al. Antibiotic resistance in microbes: history, mechanisms, therapeutic strategies and future prospects. J Infect Public Health 2021; 14:1750–1766 [View Article] [PubMed]
    [Google Scholar]
  29. Macori G, Giacinti G, Bellio A, Gallina S, Bianchi DM et al. Molecular epidemiology of methicillin-resistant and methicillin-susceptible Staphylococcus aureus in the ovine dairy chain and in farm-related humans. Toxins 2017; 9:161 [View Article] [PubMed]
    [Google Scholar]
  30. Anes J, Nguyen SV, Eshwar AK, McCabe E, Macori G et al. Molecular characterisation of multi-drug resistant Escherichia coli of bovine origin. Vet Microbiol 2020; 242:108566 [View Article] [PubMed]
    [Google Scholar]
  31. Picozzi S, Ricci C, Gaeta M, Macchi A, Dinang E et al. Do we really know the prevalence of multi-drug resistant Escherichia coli in the territorial and nosocomial population?. Urol Ann 2013; 5:25–29 [View Article] [PubMed]
    [Google Scholar]
  32. Mekki AH, Hassan AN, Elsayed DEM. Extended spectrum beta Lactamases among multi drug resistant Escherichia coli and Klebsiella species causing urinary tract infections in Khartoum. J Bacteriol Res 2010; 2:18–21
    [Google Scholar]
  33. Wang X, Wang Y, Zhou Y, Li J, Yin W et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microbes Infect 2018; 7:122 [View Article] [PubMed]
    [Google Scholar]
  34. Wellington EMH, Boxall AB, Cross P, Feil EJ, Gaze WH et al. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect Dis 2013; 13:155–165 [View Article] [PubMed]
    [Google Scholar]
  35. Ahmad I, Malak HA, Abulreesh HH. Environmental antimicrobial resistance and its drivers: a potential threat to public health. J Glob Antimicrob Resist 2021; 27:101–111 [View Article] [PubMed]
    [Google Scholar]
  36. Söhngen C, Bunk B, Podstawka A, Gleim D, Overmann J. BacDive–the bacterial diversity metadatabase. Nucleic Acids Res 2014; 42:D592–9 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006250
Loading
/content/journal/ijsem/10.1099/ijsem.0.006250
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error