1887

Abstract

The International Code of Nomenclature of Prokaryotes (ICNP) now includes the categories domain and kingdom. For the purpose of the valid publication of their names under the ICNP, we consider here the two known domains, ‘’ and ‘’, as well as a number of taxa suitable for the rank of kingdom, based on previous phylogenetic and taxonomic studies. It is proposed to subdivide the domain into the kingdoms , , and . This arrangement reflects contemporary phylogenetic hypotheses as well as previous taxonomic proposals based on cell wall structure, including ‘diderms’ vs. ‘monoderms’, vs. , ‘’ vs. ‘’, ‘’ vs. ‘’, and ‘’ vs. ‘’. The domain is proposed to include the kingdoms , and , reflecting the previous division into ‘’, ‘DPANN superphylum’ and ‘TACK superphylum’.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006242
2024-01-22
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/1/ijsem006242.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006242&mimeType=html&fmt=ahah

References

  1. Oren A, Arahal DR, Göker M, Moore ERB, Rossello-Mora R et al. International Code of Nomenclature of Prokaryotes. Prokaryotic code (2022 Revision). Int J Syst Evol Microbiol 2023; 73:5585 [View Article] [PubMed]
    [Google Scholar]
  2. Oren A, Arahal DR, Rosselló-Móra R, Sutcliffe IC, Moore ERB. Emendation of rules 5b, 8, 15 and 22 of the International Code of Nomenclature of Prokaryotes to include the rank of phylum. Int J Syst Evol Microbiol 2021; 71:4851 [View Article] [PubMed]
    [Google Scholar]
  3. Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 2021; 71:005056 [View Article] [PubMed]
    [Google Scholar]
  4. Oren A, Garrity GM. Notification that new names of prokaryotes, new combinations, and new taxonomic opinions have appeared in volume 71, part 10 of the IJSEM. Int J Syst Evol Microbiol 2022; 72:5165 [View Article] [PubMed]
    [Google Scholar]
  5. Oren A, Mareš J, Rippka R. Validation of the names Cyanobacterium and Cyanobacterium stanieri, and proposal of Cyanobacteriota phyl. nov.. Int J Syst Evol Microbiol 2022; 72:5528 [View Article]
    [Google Scholar]
  6. Oren A, Göker M. Notification that new names of prokaryotes, new combinations, and new taxonomic opinions have appeared in volume 72, part 10 of the IJSEM. Int J Syst Evol Microbiol 2023; 73:005736 [View Article] [PubMed]
    [Google Scholar]
  7. Göker M, Oren A. Valid publication of four additional phylum names. Int J Syst Evol Microbiol 2023; 73:006024
    [Google Scholar]
  8. Sakai HD, Nur N, Kato S, Yuki M, Shimizu M et al. Insight into the symbiotic lifestyle of DPANN archaea revealed by cultivation and genome analyses. Proc Natl Acad Sci U S A 2022; 119:e2115449119 [View Article] [PubMed]
    [Google Scholar]
  9. Oren A, Göker M. Validation list no. 214. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2023; 73:6080 [View Article] [PubMed]
    [Google Scholar]
  10. Chuvochina M, Mussig AJ, Chaumeil P-A, Skarshewski A, Rinke C et al. Proposal of names for 329 higher rank taxa defined in the genome taxonomy database under two prokaryotic codes. FEMS Microbiol Lett 2023; 370:fnad071 [View Article] [PubMed]
    [Google Scholar]
  11. Göker M, Moore ERB, Oren A, Trujillo ME. Status of the SeqCode in the International Journal of Systematic and Evolutionary Microbiology. Int J Syst Evol Microbiol 2022; 72:5754 [View Article] [PubMed]
    [Google Scholar]
  12. Oren A, Göker M. Validation List no. 215. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2024; 74: [View Article] [PubMed]
    [Google Scholar]
  13. Göker M, Oren A. Proposal to include the categories kingdom and domain in the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2023; 73:5650
    [Google Scholar]
  14. Oren A. Emendation of Principle 8, Rules 5b, 8, 15, 33a, and Appendix 7 of the International Code of Nomenclature of Prokaryotes to include the categories of kingdom and domain. Int J Syst Evol Microbiol 2023; 73:6123 [View Article] [PubMed]
    [Google Scholar]
  15. Göker M. Filling the gaps: missing taxon names at the ranks of class, order and family. Int J Syst Evol Microbiol 2023; 72:5638
    [Google Scholar]
  16. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 1990; 87:4576–4579 [View Article] [PubMed]
    [Google Scholar]
  17. Sneath PHA, McGowan V, Skerman VBD. Approved lists of bacterial names. Int J Syst Bacteriol 1980; 30:225–420 [View Article]
    [Google Scholar]
  18. Ehrenberg CG. Dritter Beitrag zur Erkenntniss grosser Organisation in der Richtung des Kleinsten Raumes. Abhandlungen der Preussischen Akademie der Wissenschaften (Berlin) aus den Jahren 1833-1835 1835; 1833–1835:143–336
    [Google Scholar]
  19. Cohn F. Untersuchungen über Bakterien. In Beiträge zur Biologie der Pflanzen 1 (Heft 2), 1872 Breslau: Max Müller; 1875 pp 127–224
    [Google Scholar]
  20. Harz CO. Actinomyces bovis, ein neuer Schimmel in den Geweben des Rindes. Deutsche Zeitschrift für Thiermedizin 1877; 5:125–140
    [Google Scholar]
  21. Thaxter R. On the Myxobacteriaceae, a new order of Schizomycetes. Botanical Gazette 1892; 17:389–406 [View Article]
    [Google Scholar]
  22. Migula W. Über ein neues System der Bakterien. Arbeiten aus dem Bakteriologischen Institut der Technischen Hochschule zu Karlsruhe 1894; 1:235–238
    [Google Scholar]
  23. Zillig W, Stetter KO, Schäfer W, Janekovic D, Wunderl S et al. Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I Abt Originale C 1981; C2:205–227 [View Article]
    [Google Scholar]
  24. Associate Editor Validation List no. 8. Int J Syst Bacteriol 1982; 32:266–268 [View Article]
    [Google Scholar]
  25. Kluyver AJ, van Niel CB. Prospects for a natural system of classification of bacteria. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und hygiene Abteilung II 1936369–403
    [Google Scholar]
  26. Knorr M. Über die Fusospirillare Symbiose, die Gattung Fusobacterium (K.B. Lehmann) und Spirillum Sputigenum. Zugleich ein Beitrag Zur Bakteriologie der Mundhöhle. II Mitteilung. die Gattung Fusobacterium. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten Und Hygiene, Abteilung I 1922; 89:4–22
    [Google Scholar]
  27. Minegishi H, Echigo A, Nagaoka S, Kamekura M, Usami R. Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. Int J Syst Evol Microbiol 2010; 60:2513–2516 [View Article] [PubMed]
    [Google Scholar]
  28. Euzéby J. Notification that new names and new combinations have appeared in volume 60, part 11, of the IJSEM. Int J Syst Evol Microbiol 2011; 61:221–222 [View Article]
    [Google Scholar]
  29. Battistuzzi FU, Feijao A, Hedges SB. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 2004; 4:44 [View Article] [PubMed]
    [Google Scholar]
  30. Battistuzzi FU, Hedges SB. A major clade of prokaryotes with ancient adaptations to life on land. Mol Biol Evol 2009; 26:335–343 [View Article] [PubMed]
    [Google Scholar]
  31. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 2013; 499:431–437 [View Article] [PubMed]
    [Google Scholar]
  32. Sekiguchi Y, Ohashi A, Parks DH, Yamauchi T, Tyson GW et al. First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking. PeerJ 2015; 3:e740 [View Article] [PubMed]
    [Google Scholar]
  33. Kirkegaard RH, Dueholm MS, McIlroy SJ, Nierychlo M, Karst SM et al. Genomic insights into members of the candidate phylum Hyd24-12 common in mesophilic anaerobic digesters. ISME J 2016; 10:2352–2364 [View Article] [PubMed]
    [Google Scholar]
  34. Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 2017; 552:400–403 [View Article] [PubMed]
    [Google Scholar]
  35. Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2017; 2:1533–1542 [View Article] [PubMed]
    [Google Scholar]
  36. Cavalier-Smith T, Chao E-Y. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). Protoplasma 2020; 257:621–753 [View Article] [PubMed]
    [Google Scholar]
  37. Coleman GA, Davín AA, Mahendrarajah TA, Szánthó LL, Spang A et al. A rooted phylogeny resolves early bacterial evolution. Science 2021; 372:eabe0511 [View Article] [PubMed]
    [Google Scholar]
  38. Yabe S, Muto K, Abe K, Yokota A, Staudigel H et al. Vulcanimicrobium alpinus gen. nov. sp. nov., the first cultivated representative of the candidate phylum “Eremiobacterota”, is a metabolically versatile aerobic anoxygenic phototroph. ISME Commun 2022; 2:120 [View Article] [PubMed]
    [Google Scholar]
  39. Moody ERR, Mahendrarajah TA, Dombrowski N, Clark JW, Petitjean C et al. An estimate of the deepest branches of the tree of life from ancient vertically evolving genes. Elife 2022; 11:e66695 [View Article] [PubMed]
    [Google Scholar]
  40. Gibbons NE, Murray RGE. Proposals concerning the higher taxa of bacteria. Int J Syst Bacteriol 1978; 28:1–6 [View Article]
    [Google Scholar]
  41. Murray RGE. The higher taxa, or, a place for everything?. In Krieg NR, Holt JG. eds Bergey’s Manual of Systematic Bacteriology, 1st. edn vol 1 Baltimore: The Williams & Wilkins Co; 1984 pp 31–34
    [Google Scholar]
  42. Gupta RS. Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 1998; 62:1435–1491 [View Article] [PubMed]
    [Google Scholar]
  43. Gupta RS. Life’s third domain (Archaea): an established fact or an endangered paradigm?. Theor Popul Biol 1998; 54:91–104 [View Article] [PubMed]
    [Google Scholar]
  44. Gupta RS. What are archaebacteria: life’s third domain or monoderm prokaryotes related to Gram-positive bacteria? A new proposal for the classification of prokaryotic organisms. Mol Microbiol 1998; 29:695–707 [View Article] [PubMed]
    [Google Scholar]
  45. Cavalier-Smith T. A revised six-kingdom system of life. Biol Rev Camb Philos Soc 1998; 73:203–266 [View Article] [PubMed]
    [Google Scholar]
  46. Cavalier-Smith T. Rooting the tree of life by transition analyses. Biol Direct 2006; 1:19 [View Article] [PubMed]
    [Google Scholar]
  47. Megrian D, Taib N, Witwinowski J, Beloin C, Gribaldo S. One or two membranes? Diderm Firmicutes challenge the Gram-positive/Gram-negative divide. Mol Microbiol 2020; 113:659–671 [View Article] [PubMed]
    [Google Scholar]
  48. Luketa S. New views on the megaclassification of life. Protistology 2012; 7:218–237
    [Google Scholar]
  49. Martinez-Gutierrez CA, Aylward FO. Phylogenetic signal, congruence, and uncertainty across bacteria and archaea. Mol Biol Evol 2021; 38:5514–5527 [View Article] [PubMed]
    [Google Scholar]
  50. Léonard RR, Sauvage E, Lupo V, Perrin A, Sirjacobs D et al. Was the last bacterial common ancestor a monoderm after all?. Genes 2022; 13:376 [View Article] [PubMed]
    [Google Scholar]
  51. Bremer N, Knopp M, Martin WF, Tria FDK. Realistic gene transfer to gene duplication ratios identify different roots in the bacterial phylogeny using a tree reconciliation method. Life 2022; 12:995 [View Article] [PubMed]
    [Google Scholar]
  52. Williams TA, Davín AA, Morel B, Szánthó LL, Spang A et al. Parameter estimation and species tree rooting using ALE and GeneRax. Genome Biol Evol 2023; 15:evad134 [View Article] [PubMed]
    [Google Scholar]
  53. Taib N, Megrian D, Witwinowski J, Adam P, Poppleton D et al. Genome-wide analysis of the firmicutes illuminates the diderm/monoderm transition. Nat Ecol Evol 2020; 4:1661–1672 [View Article] [PubMed]
    [Google Scholar]
  54. Witwinowski J, Sartori-Rupp A, Taib N, Pende N, Tham TN et al. An ancient divide in outer membrane tethering systems in bacteria suggests a mechanism for the diderm-to-monoderm transition. Nat Microbiol 2022; 7:411–422 [View Article] [PubMed]
    [Google Scholar]
  55. Huber R, Langworthy TA, Konig H, Thomm M, Woese CR et al. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 1986; 144:324–333 [View Article]
    [Google Scholar]
  56. Associate Editor Validation list no. 22. Int J Syst Bacteriol 1986; 36:573–576 [View Article]
    [Google Scholar]
  57. Guy L, Ettema TJG. The archaeal “TACK” superphylum and the origin of eukaryotes. Trends Microbiol 2011; 19:580–587 [View Article] [PubMed]
    [Google Scholar]
  58. Williams TA, Foster PG, Cox CJ, Embley TM. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 2013; 504:231–236 [View Article] [PubMed]
    [Google Scholar]
  59. Podar M, Makarova KS, Graham DE, Wolf YI, Koonin EV et al. Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park. Biol Direct 2013; 8:9 [View Article] [PubMed]
    [Google Scholar]
  60. Petitjean C, Deschamps P, López-García P, Moreira D. Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota. Genome Biol Evol 2014; 7:191–204 [View Article] [PubMed]
    [Google Scholar]
  61. Baker BJ, Saw JH, Lind AE, Lazar CS, Hinrichs K-U et al. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nat Microbiol 2016; 1:16002 [View Article] [PubMed]
    [Google Scholar]
  62. Esser SP, Rahlff J, Zhao W, Predl M, Plewka J et al. A predicted CRISPR-mediated symbiosis between uncultivated archaea. Nat Microbiol 2023; 8:1619–1633 [View Article] [PubMed]
    [Google Scholar]
  63. Golyshina OV, Toshchakov SV, Makarova KS, Gavrilov SN, Korzhenkov AA et al. “ARMAN” archaea depend on association with euryarchaeal host in culture and in situ. Nat Commun 2017; 8:60 [View Article] [PubMed]
    [Google Scholar]
  64. Liu Y, Makarova KS, Huang W-C, Wolf YI, Nikolskaya AN et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 2021; 593:553–557 [View Article] [PubMed]
    [Google Scholar]
  65. Rinke C, Chuvochina M, Mussig AJ, Chaumeil P-A, Davín AA et al. A standardized archaeal taxonomy for the genome taxonomy database. Nat Microbiol 2021; 6:946–959 [View Article] [PubMed]
    [Google Scholar]
  66. Seitz KW, Lazar CS, Hinrichs KU, Teske AP, Baker BJ. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J 2016; 10:1696–1705 [View Article] [PubMed]
    [Google Scholar]
  67. Sorokin DY, Makarova KS, Abbas B, Ferrer M, Golyshin PN et al. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat Microbiol 2017; 2:17081 [View Article] [PubMed]
    [Google Scholar]
  68. Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 2015; 521:173–179 [View Article] [PubMed]
    [Google Scholar]
  69. Williams TA, Szöllősi GJ, Spang A, Foster PG, Heaps SE et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc Natl Acad Sci USA 2017; 114:E4602–E4611 [View Article] [PubMed]
    [Google Scholar]
  70. Xie R, Wang Y, Huang D, Hou J, Li L et al. Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. Sci China Life Sci 2022; 65:818–829 [View Article] [PubMed]
    [Google Scholar]
  71. Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr Biol 2015; 25:690–701 [View Article] [PubMed]
    [Google Scholar]
  72. Aouad M, Flandrois J-P, Jauffrit F, Gouy M, Gribaldo S et al. A divide-and-conquer phylogenomic approach based on character supermatrices resolves early steps in the evolution of the Archaea. BMC Ecol Evol 2022; 22:1 [View Article] [PubMed]
    [Google Scholar]
  73. Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J 2017; 11:2407–2425 [View Article] [PubMed]
    [Google Scholar]
  74. Castelle CJ, Banfield JF. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 2018; 172:1181–1197 [View Article] [PubMed]
    [Google Scholar]
  75. Da Cunha V, Gaia M, Gadelle D, Nasir A, Forterre P. Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Genet 2017; 13:e1006810 [View Article] [PubMed]
    [Google Scholar]
  76. De Anda V, Chen L-X, Dombrowski N, Hua Z-S, Jiang H-C et al. Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways. Nat Commun 2021; 12:2404 [View Article] [PubMed]
    [Google Scholar]
  77. Dombrowski N, Williams TA, Sun J, Woodcroft BJ, Lee J-H et al. Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution. Nat Commun 2020; 11:3939 [View Article] [PubMed]
    [Google Scholar]
  78. Rinke C, Rubino F, Messer LF, Youssef N, Parks DH et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J 2019; 13:663–675 [View Article] [PubMed]
    [Google Scholar]
  79. Wang Y, Wegener G, Hou J, Wang F, Xiao X. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat Microbiol 2019; 4:595–602 [View Article] [PubMed]
    [Google Scholar]
  80. Garrity GM, Holt JG. Phylum AII. Euryarchaeota phy. nov. In Boone DR, Castenholz RW, Garrity GM. eds Bergey’s Manual of Systematic BacteriologyThe Archaea and the deeply branching and phototrophic Bacteria, 2nd. edn vol 1 New York: Springer-Verlag; 2001 pp 211–355
    [Google Scholar]
  81. Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y et al. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci USA 2008; 105:8102–8107 [View Article] [PubMed]
    [Google Scholar]
  82. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 2002; 417:63–67 [View Article] [PubMed]
    [Google Scholar]
  83. Dick GJ, Baker BJ. Omic approaches in microbial ecology: charting the unknown. Microbe Magazine 2013; 8:353–360 [View Article]
    [Google Scholar]
  84. Oren A, Göker M. Candidatus list. Lists of names of prokaryotic Candidatus phyla. Int J Syst Evol Microbiol 2023; 73:5821 [View Article] [PubMed]
    [Google Scholar]
  85. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 2008; 6:245–252 [View Article] [PubMed]
    [Google Scholar]
  86. Garrity GM, Holt JG. Phylum AI. Crenarchaeota phy. nov. In Boone DR, Castenholz RW, Garrity GM. eds Bergey’s Manual of Systematic BacteriologyThe Archaea and the deeply branching and phototrophic Bacteria, 2nd. edn vol 1 New York: Springer-Verlag; 2001 pp 169–210
    [Google Scholar]
  87. Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res 2011; 39:3204–3223 [View Article] [PubMed]
    [Google Scholar]
  88. Ludwig W, Klenk HP. Overview: a phylogenetic backbone and taxonomic framework for procaryotic systematics. In Boone DR, Castenholz RW, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology, 2nd. edn vol 1 New York: Springer; 2001 pp 213–235 [View Article]
    [Google Scholar]
  89. Kato S, Itoh T, Iino T, Ohkuma M. Nanobdella aerobiophila gen. nov., sp. nov., a thermoacidophilic, obligate ectosymbiotic archaeon, and proposal of Nanobdellaceae fam. nov., Nanobdellales ord. nov. and Nanobdellia class. nov. Int J Syst Evol Microbiol 2022; 72:5489 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006242
Loading
/content/journal/ijsem/10.1099/ijsem.0.006242
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error