1887

Abstract

This study describes two Gram-negative, flexirubin-producing, biofilm-forming, motile-by-gliding and rod-shaped bacteria, isolated from the marine sponges and collected off the coast of Algarve, Portugal. Both strains, designated Aq135 and Aq349, were classified into the genus by means of 16S rRNA gene sequencing. We then performed phylogenetic, phylogenomic and biochemical analyses to determine whether these strains represent novel species. Whereas the closest 16S rRNA gene relatives to strain Aq135 were JAMB N27 (97.8 %) and w01 (97.1 %), strain Aq349 was more closely related to XH134 (99.2 %) and 22II-S11-z7 (98.1 %). Both strains showed genome-wide average nucleotide identity scores below the species level cut-off (95 %) with all type strains with publicly available genomes, including their closest relatives. Digital DNA–DNA hybridization further suggested a novel species status for both strains since values lower than 70 % hybridization level with other type strains were obtained. Strains Aq135 and Aq349 grew from 4 to 30°C and with between 1–5 % (w/v) NaCl in marine broth. The most abundant fatty acids were iso-C3-OH and iso-C and the only respiratory quinone was MK-6. Strain Aq135 was catalase-positive and β-galactosidase-negative, while Aq349 was catalase-negative and β-galactosidase-positive. These strains hold unique sets of secondary metabolite biosynthetic gene clusters and are known to produce the peptide antibiotics aquimarins (Aq135) and the trans-AT polyketide cuniculene (Aq349), respectively. Based on the polyphasic approach employed in this study, we propose the novel species names sp. nov. (type strain Aq135=DSM 115833=UCCCB 169=ATCC TSD-360) and sp. nov. (type strain Aq349=DSM 115834=UCCCB 170=ATCC TSD-361).

Funding
This study was supported by the:
  • Fundação para a Ciência e a Tecnologia (Award LA/P/0140/2020)
    • Principle Award Recipient: NotApplicable
  • Fundação para a Ciência e a Tecnologia (Award UIDP/04565/2020)
    • Principle Award Recipient: NotApplicable
  • Fundação para a Ciência e a Tecnologia (Award UIDB/04565/2020)
    • Principle Award Recipient: NotApplicable
  • República Portuguesa (Award C644915664-00000026)
    • Principle Award Recipient: R.Costa
  • Direção Geral de Política do Mar (Award FA_05_2017_032)
    • Principle Award Recipient: R.Costa
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006228
2024-01-19
2024-04-27
Loading full text...

Full text loading...

References

  1. Nedashkovskaya OI, Kim SB, Suzuki M, Shevchenko LS, Lee MS et al. Description of Aquimarina muelleri gen. nov., sp. nov., and proposal of the reclassification of [Cytophaga] latercula Lewin 1969 as Stanierella latercula gen. nov., comb. nov. Int J Syst Evol Microbiol 2005; 55:2583–2588 [View Article] [PubMed]
    [Google Scholar]
  2. Yi H, Chun J. Aquimarina addita sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011; 61:2445–2449 [View Article] [PubMed]
    [Google Scholar]
  3. Wang Y, Ming H, Guo W, Chen H, Zhou C. Aquimarina aggregata sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2016; 66:3406–3412 [View Article]
    [Google Scholar]
  4. Li G, Lai Q, Sun F, Liu X, Xie Y et al. Aquimarina atlantica sp. nov., isolated from surface seawater of the Atlantic Ocean. Antonie van Leeuwenhoek 2014; 106:293–300 [View Article]
    [Google Scholar]
  5. Wang N-N, Li C-M, Li Y-X, Du Z-J. Aquimarina celericrescens sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2018; 68:1683–1688 [View Article] [PubMed]
    [Google Scholar]
  6. Lewin RA. A classification of flexibacteria. J Gen Microbiol 1969; 58:189–206 [View Article] [PubMed]
    [Google Scholar]
  7. Nedashkovskaya OI, Vancanneyt M, Christiaens L, Kalinovskaya NI, Mikhailov VV et al. Aquimarina intermedia sp. nov., reclassification of Stanierella latercula (Lewin 1969) as Aquimarina latercula comb. nov. and Gaetbulimicrobium brevivitae Yoon et al. 2006 as Aquimarina brevivitae comb. nov. and emended description of the genus Aquimarina. Int J Syst Evol Microbiol 2006; 56:2037–2041 [View Article] [PubMed]
    [Google Scholar]
  8. Yu T, Yin Q, Song X, Zhao R, Shi X et al. Aquimarina longa sp. nov., isolated from seawater, and emended description of Aquimarina muelleri. Int J Syst Evol Microbiol 2013; 63:1235–1240 [View Article] [PubMed]
    [Google Scholar]
  9. Yu T, Zhang Z, Fan X, Shi X, Zhang X-H. Aquimarina megaterium sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014; 64:122–127 [View Article]
    [Google Scholar]
  10. Zhang Z, Yu T, Xu T, Zhang X-H. Aquimarina pacifica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014; 64:1991–1997 [View Article] [PubMed]
    [Google Scholar]
  11. Oh Y, Choi B-G, Kim JY, Roh SW, Lee S-J. Aquimarina seongsanensis sp. nov., isolated from sea water. Antonie van Leeuwenhoek 2017; 110:1019–1025 [View Article] [PubMed]
    [Google Scholar]
  12. Miyazaki M, Nagano Y, Fujiwara Y, Hatada Y, Nogi Y. Aquimarina macrocephali sp. nov., isolated from sediment adjacent to sperm whale carcasses. Int J Syst Evol Microbiol 2010; 60:2298–2302 [View Article] [PubMed]
    [Google Scholar]
  13. Han J-R, Fang D-B, Xia H-F, Chen G-J, Du Z-J. Aquimarina rubra sp. nov., isolated from sediment of a sea cucumber culture pond. Int J Syst Evol Microbiol 2017; 67:1932–1936 [View Article]
    [Google Scholar]
  14. Wang N-N, Zhou L-Y, Li Y-X, Du Z-J. Aquimarina sediminis sp. nov., isolated from coastal sediment. Antonie Van Leeuwenhoek 2018; 111:2257–2265 [View Article] [PubMed]
    [Google Scholar]
  15. Lee JK, Cha I-T, Kim M, Choi B-G, Song HS et al. Aquimarina versatilis sp. nov., isolated from seashore sand, and emended description of the genus Aquimarina. Int J Syst Evol Microbiol 2017; 67:411–416 [View Article] [PubMed]
    [Google Scholar]
  16. Lin B, Lu G, Zheng Y, Xie W, Li S et al. Aquimarina agarilytica sp. nov., an agarolytic species isolated from a red alga. Int J Syst Evol Microbiol 2012; 62:869–873 [View Article] [PubMed]
    [Google Scholar]
  17. Zhou Y-X, Wang C, Du Z-J, Chen G-J. Aquimarina agarivorans sp. nov., a genome-sequenced member of the class Flavobacteriia isolated from Gelidium amansii. Int J Syst Evol Microbiol 2015; 65:2684–2688 [View Article] [PubMed]
    [Google Scholar]
  18. Nedashkovskaya OI, Kim S-G, Stenkova AM, Kukhlevskiy AD, Zhukova NV et al. Aquimarina algiphila sp. nov., a chitin degrading bacterium isolated from the red alga Tichocarpus crinitus. Int J Syst Evol Microbiol 2018; 68:892–898 [View Article]
    [Google Scholar]
  19. Sun X-K, Zhong Y-L, Chen X-Y, Chen G-J, Du Z-J. Aquimarina algicola sp. nov., isolated from the surface of a marine red alga. Arch Microbiol 2021; 203:5397–5403 [View Article] [PubMed]
    [Google Scholar]
  20. Kennedy J, Margassery LM, O’Leary ND, O’Gara F, Morrissey J et al. Aquimarina amphilecti sp. nov., isolated from the sponge Amphilectus fucorum. Int J Syst Evol Microbiol 2014; 64:501–505 [View Article] [PubMed]
    [Google Scholar]
  21. Yoon B-J, You H-S, Lee D-H, Oh D-C. Aquimarina spongiae sp. nov., isolated from marine sponge Halichondria oshoro. Int J Syst Evol Microbiol 2011; 61:417–421 [View Article] [PubMed]
    [Google Scholar]
  22. Choi KD, Lee G-E, Park J-S. Aquimarina spongiicola sp. nov., isolated from spongin. Int J Syst Evol Microbiol 2018; 68:990–994 [View Article]
    [Google Scholar]
  23. Park SC, Choe HN, Baik KS, Seong CN. Aquimarina mytili sp. nov., isolated from the gut microflora of a mussel, Mytilus coruscus, and emended description of Aquimarina macrocephali. Int J Syst Evol Microbiol 2012; 62:1974–1979 [View Article] [PubMed]
    [Google Scholar]
  24. Park SC, Choe HN, Baik KS, Seong CN. Aquimarina gracilis sp. nov., isolated from the gut microflora of a mussel, Mytilus coruscus, and emended description of Aquimarina spongiae. Int J Syst Evol Microbiol 2013; 63:1782–1787 [View Article] [PubMed]
    [Google Scholar]
  25. Yoon J-H, Kang S-J, Jung S-Y, Oh HW, Oh T-K. Gaetbulimicrobium brevivitae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2006; 56:115–119 [View Article] [PubMed]
    [Google Scholar]
  26. Zheng Y, Wang Y, Liu Y, Li W, Yu M et al. Aquimarina hainanensis sp. nov., isolated from diseased Pacific white shrimp Litopenaeus vannamei larvae. Int J Syst Evol Microbiol 2016; 66:70–75 [View Article] [PubMed]
    [Google Scholar]
  27. Li X, Wang L, Huang H, Lai Q, Shao Z. Aquimarina penaei sp. nov., isolated from intestinal tract contents of Pacific white shrimp, Penaeus vannamei. . Antonie van Leeuwenhoek 2014; 106:1223–1229 [View Article]
    [Google Scholar]
  28. Sun H, Rao C, Yang X, Xie Z, Chen B et al. Aquimarina acroporae sp. nov., isolated from seawater surrounding scleractinian coral Acropora digitifera. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  29. Chen W-M, Sheu F-S, Sheu S-Y. Aquimarina salinaria sp. nov., a novel algicidal bacterium isolated from a saltpan. Arch Microbiol 2012; 194:103–112 [View Article] [PubMed]
    [Google Scholar]
  30. Dieterich CL, Probst SI, Ueoka R, Sandu I, Schäfle D et al. Aquimarins, peptide antibiotics with amino-modified C-termini from a sponge-derived Aquimarina sp. bacterium. Angew Chem Int Ed Engl 2022; 61:e202115802 [View Article] [PubMed]
    [Google Scholar]
  31. Helfrich EJN, Ueoka R, Dolev A, Rust M, Meoded RA et al. Automated structure prediction of trans-acyltransferase polyketide synthase products. Nat Chem Biol 2019; 15:813–821 [View Article] [PubMed]
    [Google Scholar]
  32. Silva SG, Blom J, Keller-Costa T, Costa R. Comparative genomics reveals complex natural product biosynthesis capacities and carbon metabolism across host-associated and free-living Aquimarina (Bacteroidetes, Flavobacteriaceae) species. Environ Microbiol 2019; 21:4002–4019 [View Article] [PubMed]
    [Google Scholar]
  33. Silva SG, Paula P, da Silva JP, Mil-Homens D, Teixeira MC et al. Insights into the antimicrobial activities and metabolomes of aquimarina (Flavobacteriaceae, Bacteroidetes) species from the rare marine biosphere. Marine Drugs 2022; 20:423 [View Article]
    [Google Scholar]
  34. Silva SG, Nabhan Homsi M, Keller-Costa T, Rocha U, Costa R. Natural product biosynthetic potential reflects macroevolutionary diversification within a widely distributed bacterial taxon. mSystems 2023e0064323 [View Article] [PubMed]
    [Google Scholar]
  35. Wei B, Hu G-A, Zhou Z-Y, Yu W-C, Du A-Q et al. Global analysis of the biosynthetic chemical space of marine prokaryotes. Microbiome 2023; 11:144 [View Article] [PubMed]
    [Google Scholar]
  36. Esteves AIS, Hardoim CCP, Xavier JR, Gonçalves JMS, Costa R. Molecular richness and biotechnological potential of bacteria cultured from Irciniidae sponges in the north-east Atlantic. FEMS Microbiol Ecol 2013; 85:519–536 [View Article]
    [Google Scholar]
  37. Piel J. Metabolites from symbiotic bacteria. Nat Prod Rep 2004; 21:519–538 [View Article] [PubMed]
    [Google Scholar]
  38. Hentschel U, Piel J, Degnan SM, Taylor MW. Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 2012; 10:641–654 [View Article] [PubMed]
    [Google Scholar]
  39. Wilson MC, Mori T, Rückert C, Uria AR, Helf MJ et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 2014; 506:58–62 [View Article] [PubMed]
    [Google Scholar]
  40. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  41. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL et al. KBase: the United States department of energy systems biology knowledgebase. Nat Biotechnol 2018; 36:566–569 [View Article] [PubMed]
    [Google Scholar]
  42. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  43. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  44. Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. Sampling and Staining for Light Microscopy. In Methods for General and Molecular Microbiology Washington, DC, USA: ASM Press; 2007 [View Article]
    [Google Scholar]
  45. Bernardet J-F, Nakagawa Y. An introduction to the family Flavobacteriaceae. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. eds The Prokaryotes New York, NY: Springer New York; 2006 pp 455–480 [View Article]
    [Google Scholar]
  46. Reiner K. Catalase Test Protocol. American Society for Microbiology; 2010 https://asm.org/getattachment/72a871fc-ba92-4128-a194-6f1bab5c3ab7/Catalase-Test-Protocol.pdf
  47. Penttinen R, Hoikkala V, Sundberg L-R. Gliding motility and expression of motility-related genes in spreading and non-spreading colonies of Flavobacterium columnare. Front Microbiol 2018; 9:525 [View Article] [PubMed]
    [Google Scholar]
  48. Wolfe AJ, Berg HC. Migration of bacteria in semisolid agar. Proc Natl Acad Sci USA 1989; 86:6973–6977 [View Article] [PubMed]
    [Google Scholar]
  49. Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ. Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 2006; 8:1997–2011 [View Article] [PubMed]
    [Google Scholar]
  50. Vazhakatt LA, Usha MD. Polysaccharide-degrading enzymes from the marine protists, thraustochytrids. Biotechnol Bioinf Bioeng 2012; 2:617–627
    [Google Scholar]
  51. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article] [PubMed]
    [Google Scholar]
  52. Kuykendall LD, Roy MA, O’neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  53. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  54. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  55. Chen I-MA, Chu K, Palaniappan K, Ratner A, Huang J et al. The IMG/M data management and analysis system v.7: content updates and new features. Nucleic Acids Res 2023; 51:D723–D732 [View Article]
    [Google Scholar]
  56. Mukherjee S, Stamatis D, Li CT, Ovchinnikova G, Bertsch J et al. Twenty-five years of Genomes OnLine Database (GOLD): data updates and new features in v.9. Nucleic Acids Res 2023; 51:D957–D963 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006228
Loading
/content/journal/ijsem/10.1099/ijsem.0.006228
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error