1887

Abstract

Five strains of two novel species were isolated from the wastewater treatment systems of a pharmaceutical factory located in Zhejiang province, PR China. Strains ZM22 and Y6 were identified as belonging to a potential novel species of the genus , whereas strains ZM23, ZM24 and ZM25 were identified as belonging to a novel species of the genus . These strains were characterized by polyphasic approaches including 16S rRNA gene analysis, multi-locus sequence analysis, average nucleotide identity (ANI), DNA–DNA hybridization (DDH), physiological and biochemical tests, as well as chemotaxonomic analysis. Genome-based phylogenetic analysis further confirmed that strains ZM22 and Y6 form a distinct clade closely related to ATCC 11996 and DSM 17888. Strains ZM23, ZM24 and ZM25 were grouped as a separate clade closely related to DSM 14399 and LAM1902. The orthoANI and DDH results indicated that strains ZM22 and Y6 belong to the same species. In addition, genomic DNA fingerprinting demonstrated that these strains do not originate from a single clone. The same results were observed for strains ZM23, ZM24 and ZM25. Strains ZM22 and Y6 were resistant to multiple antibiotics, whereas strains ZM23, ZM24 and ZM25 were able to degrade an emerging pollutant, triclosan. The phylogenetic, physiological and biochemical characteristics, as well as chemotaxonomy, allowed these strains to be distinguished from their genus, and we therefore propose the names sp. nov. (type strain ZM22=MCCC 1K08496=KCTC 82561) and sp. nov. (type strain ZM23=MCCC 1K08497=JCM 36056), respectively.

Funding
This study was supported by the:
  • Zhejiang Xinmiao Talents Program (Award 2023R401025)
    • Principle Award Recipient: JiayuHan
  • Innovative Research Group Project of the National Natural Science Foundation of China (Award 41721001)
    • Principle Award Recipient: ZhenmeiLu
  • National Natural Science Foundation of China (Award 32370117)
    • Principle Award Recipient: ZhenmeiLu
  • the Key Research and Development Program of Zhejiang Province (Award 2021C03168)
    • Principle Award Recipient: ZhenmeiLu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006222
2024-01-08
2024-05-17
Loading full text...

Full text loading...

References

  1. De Vos P, Kersters K, Falsen E, Pot B, Gillis M et al. Comamonas Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int J Syst Bacteriol 1985; 35:443–453 [View Article]
    [Google Scholar]
  2. Park EH, Kim YS, Cha CJ. Comamonas fluminis sp. nov., isolated from the Han River, Republic of Korea. Int J Syst Evol Microbiol 2022; 72:005287 [View Article] [PubMed]
    [Google Scholar]
  3. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  4. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  5. Yu XY, Li YF, Zheng JW, Li Y, Li L et al. Comamonas zonglianii sp. nov., isolated from phenol-contaminated soil. Int J Syst Evol Microbiol 2011; 61:255–258 [View Article] [PubMed]
    [Google Scholar]
  6. Luo X, Guo J, Lan Y, An L, Zhang X et al. Toxic response of antimony in the Comamonas testosteroni and its application in soil antimony bioremediation. Environ Int 2023; 178:108040 [View Article] [PubMed]
    [Google Scholar]
  7. Young CC, Chou JH, Arun AB, Yen WS, Sheu SY et al. Comamonas composti sp. nov., isolated from food waste compost. Int J Syst Evol Microbiol 2008; 58:251–256 [View Article] [PubMed]
    [Google Scholar]
  8. Chang Y-H, Han J, Chun J, Lee KC, Rhee M-S et al. Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. Int J Syst Evol Microbiol 2002; 52:377–381 [View Article] [PubMed]
    [Google Scholar]
  9. Yao N-H, Liu X, Luo C, Zou L, Li J et al. Methylhydroxylase encoded by mchAB gene is involved in methyl oxidation of m-cresol via Comamonas thiooxydans CHJ601. Int Biodeterior Biodegrad 2023; 179:105583 [View Article]
    [Google Scholar]
  10. Zhu G, Zhang HY, Yuan R, Huang M, Liu F et al. How Comamonas testosteroni and Rhodococcus ruber enhance nitrification in the presence of quinoline. Water Research 2023; 229:119455 [View Article]
    [Google Scholar]
  11. Dierkes RF, Wypych A, Pérez-García P, Danso D, Chow J et al. An ultra-sensitive Comamonas thiooxidans biosensor for the rapid detection of enzymatic polyethylene terephthalate (PET) degradation. Appl Environ Microbiol 2023; 89:e0160322 [View Article] [PubMed]
    [Google Scholar]
  12. Shi Z, Qi X, Zeng X-A, Lu Y, Zhou J et al. A newly isolated bacterium Comamonas sp. XL8 alleviates the toxicity of cadmium exposure in rice seedlings by accumulating cadmium. J Hazard Mater 2021; 403:123824 [View Article] [PubMed]
    [Google Scholar]
  13. Horinouchi M, Kurita T, Yamamoto T, Hatori E, Hayashi T et al. Steroid degradation gene cluster of Comamonas testosteroni consisting of 18 putative genes from meta-cleavage enzyme gene tesB to regulator gene tesR. Biochem Biophys Res Commun 2004; 324:597–604 [View Article] [PubMed]
    [Google Scholar]
  14. Vural C, Diallo MM, Ozdemir G. Assessment of Comamonas testosteroni strain PT9 as a rapid phthalic acid degrader for industrial wastewaters. J Basic Microbiol 2022; 62:508–517 [View Article] [PubMed]
    [Google Scholar]
  15. Horinouchi M, Koshino H, Malon M, Hirota H, Hayashi T. Steroid degradation in Comamonas testosteroni TA441: identification of metabolites and the genes involved in the reactions necessary before D-Ring cleavage. Appl Environ Microbiol 2018; 84:e01324-18 [View Article] [PubMed]
    [Google Scholar]
  16. Farshad S, Norouzi F, Aminshahidi M, Heidari B, Alborzi A. Two cases of bacteremia due to an unusual pathogen, Comamonas testosteroni in Iran and a review literature. J Infect Dev Ctries 2012; 6:521–525 [View Article] [PubMed]
    [Google Scholar]
  17. Hem S, Wyrsch ER, Drigo B, Baker DJ, Charles IG et al. Genomic analysis of carbapenem-resistant Comamonas in water matrices: implications for public health and wastewater treatments. Appl Environ Microbiol 2022; 88:e0064622 [View Article] [PubMed]
    [Google Scholar]
  18. Migula W. Über ein Neues system der Bakterien. Arb Bakteriol Inst Karlsruhe 1894; 1:235–238
    [Google Scholar]
  19. Moore ERB, Mau M, Arnscheidt A, Böttger EC, Hutson RA et al. The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto and estimation of the natural intrageneric relationships. Syst Appl Microbiol 1996; 19:478–492 [View Article]
    [Google Scholar]
  20. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010; 12:1513–1530 [View Article] [PubMed]
    [Google Scholar]
  21. Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q et al. Genome-based evolutionary history of Pseudomonas spp. Environ Microbiol 2018; 20:2142–2159 [View Article] [PubMed]
    [Google Scholar]
  22. Lalucat J, Gomila M, Mulet M, Zaruma A, García-Valdés E. Past, present and future of the boundaries of the Pseudomonas genus: proposal of Stutzerimonas gen. nov. Syst Appl Microbiol 2022; 45:126289 [View Article] [PubMed]
    [Google Scholar]
  23. Mulet M, Sánchez D, Rodríguez AC, Nogales B, Bosch R et al. Pseudomonas gallaeciensis sp. nov., isolated from crude-oil-contaminated intertidal sand samples after the prestige oil spill. Syst Appl Microbiol 2018; 41:340–347 [View Article] [PubMed]
    [Google Scholar]
  24. Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 2011; 35:652–680 [View Article] [PubMed]
    [Google Scholar]
  25. Wang WW, Li QG, Zhang LG, Cui J, Yu H et al. Genetic mapping of highly versatile and solvent-tolerant Pseudomonas putida B6-2 (ATCC BAA-2545) as a “superstar” for mineralization of PAHs and dioxin-like compounds. Environ Microbiol 2021; 23:4309–4325 [View Article] [PubMed]
    [Google Scholar]
  26. Barathi S, Vasudevan N. Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Environ Int 2001; 26:413–416 [View Article] [PubMed]
    [Google Scholar]
  27. Li J, Li S, Xie L, Chen G, Shen M et al. Additional role of nicotinic acid hydroxylase for the transformation of 3-succinoyl-pyridine by Pseudomonas sp. strain JY-Q. Appl Environ Microbiol 2021; 87:e02740-20 [View Article] [PubMed]
    [Google Scholar]
  28. Ghosh S, Cremers CM, Jakob U, Love NG. Chlorinated phenols control the expression of the multidrug resistance efflux pump MexAB-OprM in Pseudomonas aeruginosa by interacting with NalC. Mol Microbiol 2011; 79:1547–1556 [View Article] [PubMed]
    [Google Scholar]
  29. Kumari R, Ghosh Sachan S. Bioconversion of toxic micropollutant triclosan to 2,4-dichlorophenol using a wastewater isolate Pseudomonas aeruginosa KS2002. Int J Environ Sci Technol 2019; 16:7663–7672 [View Article]
    [Google Scholar]
  30. Yin YR, Wu H, Jiang ZH, Jiang JW, Lu ZM. Degradation of triclosan in the water environment by microorganisms: a review. Microorganisms 2022; 10:1713 [View Article]
    [Google Scholar]
  31. Lu J, Yu ZG, Ding PB, Guo JH. Triclosan promotes conjugative transfer of antibiotic resistance genes to opportunistic pathogens in environmental microbiome. Environ Sci Technol 2022; 56:15108–15119 [View Article] [PubMed]
    [Google Scholar]
  32. Shi XD, Xia Y, Wei W, Ni BJ. Accelerated spread of antibiotic resistance genes (ARGs) induced by non-antibiotic conditions: roles and mechanisms. Water Res 2022; 224:119060 [View Article] [PubMed]
    [Google Scholar]
  33. Lu J, Yu ZG, Ding PB, Guo JH. Triclosan promotes conjugative transfer of antibiotic resistance genes to opportunistic pathogens in environmental microbiome. Environ Sci Technol 2022; 56:15108–15119 [View Article]
    [Google Scholar]
  34. Tan Q, Chen J, Chu Y, Liu W, Yang L et al. Triclosan weakens the nitrification process of activated sludge and increases the risk of the spread of antibiotic resistance genes. J Hazard Mater 2021; 416:126085 [View Article] [PubMed]
    [Google Scholar]
  35. Lu J, Wang Y, Li J, Mao LK, Nguyen SH et al. Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera. Environ Int 2018; 121:1217–1226 [View Article] [PubMed]
    [Google Scholar]
  36. Larsson DGJ, Andremont A, Bengtsson-Palme J, Brandt KK, de Roda Husman AM et al. Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environ Int 2018; 117:132–138 [View Article] [PubMed]
    [Google Scholar]
  37. Contardo-Jara V, Meinecke S, Feibicke M, Berghahn R, Schmidt R et al. Fate, bioaccumulation and toxic effects of triclosan on a freshwater community – a mesocosm study. Environ Adv 2021; 5:100100 [View Article]
    [Google Scholar]
  38. Kumari R, Ghosh Sachan S. Bioconversion of toxic micropollutant triclosan to 2,4-dichlorophenol using a wastewater isolate Pseudomonas aeruginosa KS2002. Int J Environ Sci Technol 2019; 16:7663–7672 [View Article]
    [Google Scholar]
  39. Zhu L, Lin JS, Ma JC, Cronan JE, Wang HH. Triclosan resistance of Pseudomonas aeruginosa PAO1 is due to FabV, a triclosan-resistant enoyl-acyl carrier protein reductase. Antimicrob Agents Chemother 2010; 54:689–698 [View Article] [PubMed]
    [Google Scholar]
  40. Huang YH, Lin JS, Ma JC, Wang HH. Functional characterization of triclosan-resistant enoyl-acyl-carrier protein reductase (FabV) in Pseudomonas aeruginosa. Front Microbiol 2016; 7:1903 [View Article] [PubMed]
    [Google Scholar]
  41. McFarland AG, Bertucci HK, Littman E, Shen JX, Huttenhower C et al. Triclosan tolerance is driven by a conserved mechanism in diverse Pseudomonas species. Appl Environ Microbiol 2021; 87:e02924-20 [View Article] [PubMed]
    [Google Scholar]
  42. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  43. Levy D, Yoshida R, Pachter L. Beyond pairwise distances: neighbor-joining with phylogenetic diversity estimates. Mol Biol Evol 2006; 23:491–498 [View Article] [PubMed]
    [Google Scholar]
  44. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  45. Edwards AWF, Larson A. The origin and early development of the method of minimum evolution for the reconstruction of phylogenetic trees. Syst Biol 1996; 45:79–91 [View Article]
    [Google Scholar]
  46. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  47. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  48. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaSci 2012; 1:18 [View Article]
    [Google Scholar]
  49. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  50. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009; 19:1117–1123 [View Article] [PubMed]
    [Google Scholar]
  51. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article] [PubMed]
    [Google Scholar]
  52. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  53. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [View Article] [PubMed]
    [Google Scholar]
  54. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  55. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  56. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  57. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  58. Sun JH, Lu F, Luo YJ, Bie LZ, Xu L et al. OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acid Res 2023; 51:W397–W403 [View Article]
    [Google Scholar]
  59. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  60. Mulet M, Gomila M, Ramírez A, Cardew S, Moore ERB et al. Uncommonly isolated clinical Pseudomonas: identification and phylogenetic assignation. Eur J Clin Microbiol Infect Dis 2017; 36:351–359 [View Article] [PubMed]
    [Google Scholar]
  61. Busquets A, Mulet M, Gomila M, García-Valdés E. Pseudomonas lalucatii sp. nov. isolated from Vallgornera, a karstic cave in Mallorca, Western Mediterranean. Syst Appl Microbiol 2021; 44:126205 [View Article] [PubMed]
    [Google Scholar]
  62. Li MM, Ma QY, Kong DL, Han XY, Che J et al. Pseudomonas nicosulfuronedens sp. nov., a Nicosulfuron degrading bacterium, isolated from a microbial consortium. Int J Syst Evol Microbiol 2021; 72:004632
    [Google Scholar]
  63. Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR et al. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res 2023; 51:D690–D699 [View Article] [PubMed]
    [Google Scholar]
  64. Zhu QY, Kosoy M, Dittmar K. HGTector: an automated method facilitating genome-wide discovery of putative horizontal gene transfers. BMC Genomics 2014; 15:717 [View Article]
    [Google Scholar]
  65. Prakash O, Kumari K, Lal R. Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal power plant. Int J Syst Evol Microbiol 2007; 57:527–531 [View Article] [PubMed]
    [Google Scholar]
  66. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006222
Loading
/content/journal/ijsem/10.1099/ijsem.0.006222
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error