1887

Abstract

A Gram-stain-negative strain, designated as D2M1 was isolated from xylene-degrading enrichment culture and characterized using a polyphasic approach to determine its taxonomic position. The 16S rRNA gene sequence analysis revealed that strain D2M1 belongs to the genus , with the highest 16S rRNA gene similarity to DSM 64 (99.93 %), followed by DSM 23535 (98.77 %) and MTCC 12652 (98.76 %). The draft genome sequence of strain D2M1 is 5.49 Mb long, and the G+C content of the genome is 64.2 mol%. Orthologous average nucleotide identity and digital DNA–DNA hybridization relatedness values between strain D2M1 and its closest relatives were below the threshold values for species demarcation confirming that strain D2M1 is distinctly separated from its closest relatives. The whole genome analysis of the strain revealed a phenol degradation gene cluster, encoding a multicomponent phenol hydroxylase (mPH) together with a complete -cleavage pathway including an I.2.C-type catechol 2,3-dioxygenase (C23O) gene. The strain was able to degrade benzene and ethylbenzene as sole sources of carbon and energy under aerobic and microaerobic conditions. Cells were facultatively aerobic rods and motile with a single polar flagellum. The predominant fatty acids (>10 % of the total) of strain D2M1 were summed feature 3 (C 7/C 6), C and summed feature 8 (C 7/C 6). The major ubiquinone of strain D2M1 was Q8, while the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Based on polyphasic data, it is concluded that strain D2M1 represents a novel species of the genus , for which the name of sp. nov. is proposed. The type strain of the species is strain D2M1 (=DSM 115238=NCAIM B.02679).

Funding
This study was supported by the:
  • Ministry for Innovation and Technology of Hungary (Award ÚNKP-22-3-II New National Excellence Programme)
    • Principle Award Recipient: AnnaBedics
  • Nemzeti Kutatási Fejlesztési és Innovációs Hivatal (Award FK 134439)
    • Principle Award Recipient: AndrásTáncsics
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006219
2024-01-05
2024-04-28
Loading full text...

Full text loading...

References

  1. Willems A, Falsen E, Pot B, Jantzen E, Hoste B et al. Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. Int J Syst Bacteriol 1990; 40:384–398 [View Article] [PubMed]
    [Google Scholar]
  2. Willems A, Gillis M. Genus II. Acidovorax Willems, Falsen, Pot, Jantzen, Hoste, Vandamme, Gillis, Kersters and De Ley. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology vol 394VP New York: Springer; 2005 pp 696–703 [View Article]
    [Google Scholar]
  3. Monferrán MV, Echenique JR, Wunderlin DA. Degradation of chlorobenzenes by a strain of Acidovorax avenae isolated from a polluted aquifer. Chemosphere 2005; 61:98–106 [View Article] [PubMed]
    [Google Scholar]
  4. Singleton DR, Lee J, Dickey AN, Stroud A, Scholl EH et al. Polyphasic characterization of four soil-derived phenanthrene-degrading Acidovorax strains and proposal of Acidovorax carolinensis sp. nov. Syst Appl Microbiol 2018; 41:460–472 [View Article] [PubMed]
    [Google Scholar]
  5. Aburto A, Peimbert M. Degradation of a benzene-toluene mixture by hydrocarbon-adapted bacterial communities. Ann Microbiol 2011; 61:553–562 [View Article] [PubMed]
    [Google Scholar]
  6. Bedics A, Táncsics A, Tóth E, Banerjee S, Harkai P et al. Microaerobic enrichment of benzene-degrading bacteria and description of Ideonella benzenivorans sp. nov., capable of degrading benzene, toluene and ethylbenzene under microaerobic conditions. Antonie van Leeuwenhoek 2022; 115:1113–1128 [View Article]
    [Google Scholar]
  7. Benedek T, Szentgyörgyi F, Szabó I, Kriszt B, Révész F et al. Aerobic and oxygen-limited enrichment of BTEX-degrading biofilm bacteria: dominance of Malikia versus Acidovorax species. Environ Sci Pollut Res 2018; 25:32178–32195 [View Article]
    [Google Scholar]
  8. Révész F, Farkas M, Kriszt B, Szoboszlay S, Benedek T et al. Effect of oxygen limitation on the enrichment of bacteria degrading either benzene or toluene and the identification of Malikia spinosa (Comamonadaceae) as prominent aerobic benzene-, toluene-, and ethylbenzene-degrading bacterium: enrichment, isolation and whole-genome analysis. Environ Sci Pollut Res 2020; 27:31130–31142 [View Article]
    [Google Scholar]
  9. Banerjee S, Bedics A, Harkai P, Kriszt B, Alpula N et al. Evaluating the aerobic xylene-degrading potential of the intrinsic microbial community of a legacy BTEX-contaminated aquifer by enrichment culturing coupled with multi-omics analysis: uncovering the role of hydrogenophaga strains in xylene degradation. Environ Sci Pollut Res 2022; 29:28431–28445 [View Article]
    [Google Scholar]
  10. Schulze R, Spring S, Amann R, Huber I, Ludwig W et al. Genotypic diversity of Acidovorax strains isolated from activated sludge and description of Acidovorax defluvii sp. nov. Syst Appl Microbiol 1999; 22:205–214 [View Article] [PubMed]
    [Google Scholar]
  11. Heylen K, Lebbe L, De Vos P. Acidovorax caeni sp. nov., a denitrifying species with genetically diverse isolates from activated sludge. Int J Syst Evol Microbiol 2008; 58:73–77 [View Article] [PubMed]
    [Google Scholar]
  12. Samanta SK, Chakraborti AK, Jain RK. Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol 1999; 53:98–107 [View Article] [PubMed]
    [Google Scholar]
  13. Aburto A, Ball AS. Bacterial population dynamics and separation of active degraders by stable Isotope probing during benzene degradation in a BTEX-impacted Aquifer. Rev Int Contam Ambient 2009; 25:147–156
    [Google Scholar]
  14. Shuttleworth KL, Cerniglia CE. Bacterial degradation of low concentrations of phenanthrene and inhibition by naphthalene. Microb Ecol 1996; 31:305–317 [View Article]
    [Google Scholar]
  15. Táncsics A, Szabó I, Baka E, Szoboszlay S, Kukolya J et al. Investigation of catechol 2,3-dioxygenase and 16S rRNA gene diversity in hypoxic, petroleum hydrocarbon contaminated groundwater. Syst Appl Microbiol 2010; 33:398–406 [View Article] [PubMed]
    [Google Scholar]
  16. Táncsics A, Szoboszlay S, Szabó I, Farkas M, Kovács B et al. Quantification of subfamily I.2.C catechol 2,3-dioxygenase mRNA transcripts in groundwater samples of an oxygen-limited BTEX-contaminated site. Environ Sci Technol 2012; 46:232–240 [View Article] [PubMed]
    [Google Scholar]
  17. Táncsics A, Farkas M, Szoboszlay S, Szabó I, Kukolya J et al. One-year monitoring of meta-cleavage dioxygenase gene expression and microbial community dynamics reveals the relevance of subfamily I.2.C extradiol dioxygenases in hypoxic, BTEX-contaminated groundwater. Syst Appl Microbiol 2013; 36:339–350 [View Article] [PubMed]
    [Google Scholar]
  18. Fahy A, McGenity TJ, Timmis KN, Ball AS. Heterogeneous aerobic benzene-degrading communities in oxygen-depleted groundwaters. FEMS Microbiol Ecol 2006; 58:260–270 [View Article] [PubMed]
    [Google Scholar]
  19. Choi JH, Kim MS, Roh SW, Bae JW. Acidovorax soli sp. nov., isolated from landfill soil. Int J Syst Evol Microbiol 2010; 60:2715–2718 [View Article] [PubMed]
    [Google Scholar]
  20. Pal D, Kaur N, Sudan SK, Bisht B, Krishnamurthi S et al. Acidovorax kalamii sp. nov., isolated from a water sample of the river Ganges. Int J Syst Evol Microbiol 2018; 68:1719–1724 [View Article]
    [Google Scholar]
  21. Li D, Rothballer M, Schmid M, Esperschütz J, Hartmann A. Acidovorax radicis sp. nov., a wheat-root-colonizing bacterium. Int J Syst Evol Microbiol 2011; 61:2589–2594 [View Article] [PubMed]
    [Google Scholar]
  22. Soergel DAW, Dey N, Knight R, Brenner SE. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J 2012; 6:1440–1444 [View Article] [PubMed]
    [Google Scholar]
  23. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  28. Benedek T, Pápai M, Gharieb K, Bedics A, Táncsics A et al. Nocardioides carbamazepini sp. nov., an ibuprofen degrader isolated from a biofilm bacterial community enriched on carbamazepine. Syst Appl Microbiol 2022; 45:126339 [View Article] [PubMed]
    [Google Scholar]
  29. Bedics A, Banerjee S, Bóka K, Tóth E, Benedek T et al. Pinisolibacter aquiterrae sp. nov., a novel aromatic hydrocarbon-degrading bacterium isolated from benzene-, and xylene-degrading enrichment cultures, and emended description of the genus Pinisolibacter. Int J Syst Evol Microbiol 2022; 72:005229 [View Article] [PubMed]
    [Google Scholar]
  30. Nurk S, Bankevich A, Antipov D et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In Deng M, Jiang R, Sun F, Zhang X. eds Research in Computational Molecular Biology Berlin, Heidelberg: Springer; 2013 pp 158–170
    [Google Scholar]
  31. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  32. Na S-I, Kim YO, Yoon S-H, Ha S, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  33. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article]
    [Google Scholar]
  34. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  35. Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res 2018; 46:W282–W288 [View Article] [PubMed]
    [Google Scholar]
  36. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article] [PubMed]
    [Google Scholar]
  37. Szoboszlay S, Atzél B, Kukolya J, Tóth EM, Márialigeti K et al. Chryseobacterium hungaricum sp. nov., isolated from hydrocarbon-contaminated soil. Int J Syst Evol Microbiol 2008; 58:2748–2754 [View Article] [PubMed]
    [Google Scholar]
  38. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press; 2004
    [Google Scholar]
  39. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt RGE, Murray WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 603–711
    [Google Scholar]
  40. Farkas M, Táncsics A, Kriszt B, Benedek T, Tóth EM et al. Zoogloea oleivorans sp. nov., a floc-forming, petroleum hydrocarbon-degrading bacterium isolated from biofilm. Int J Syst Evol Microbiol 2015; 65:274–279 [View Article] [PubMed]
    [Google Scholar]
  41. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  42. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  43. Banerjee S, Bedics A, Tóth E, Kriszt B, Soares AR et al. Isolation of Pseudomonas aromaticivorans sp. nov from a hydrocarbon-contaminated groundwater capable of degrading benzene-, toluene-, m- and p-xylene under microaerobic conditions. Front Microbiol 2022; 13:929128 [View Article] [PubMed]
    [Google Scholar]
  44. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article]
    [Google Scholar]
  45. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015; 38:209–216 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006219
Loading
/content/journal/ijsem/10.1099/ijsem.0.006219
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error