1887

Abstract

In this study, a Gram-stain-positive, non-motile, oxidase- and catalase-negative, rod-shaped, bacterial strain (SG_E_30_P1) that formed light yellow colonies was isolated from a groundwater sample of Sztaravoda spring, Hungary. Based on 16S rRNA phylogenetic and phylogenomic analyses, the strain was found to form a distinct linage within the family . Its closest relatives in terms of near full-length 16S rRNA gene sequences are MH299814 (97.72 % sequence similarity) and GQ406810 (97.57 %). The novel strain grows optimally at 20–28 °C, at neutral pH and in the presence of NaCl (1–2 w/v%). Strain SG_E_30_P1 contains MK-7 and B-type peptidoglycan with diaminobutyrate as the diagnostic amino acid. The major cellular fatty acids are anteiso-C, iso-C and iso-C, and the polar lipid profile is composed of diphosphatidylglycerol and phosphatidylglycerol, as well as an unidentified aminoglycolipid, aminophospholipid and some unidentified phospholipids. The assembled draft genome is a contig with a total length of 2 897 968 bp and a DNA G+C content of 65.5 mol%. Amino acid identity values with it closest relatives with sequenced genomes of <62.54 %, as well as other genome distance results, indicate that this bacterium represents a novel genus within the family . We suggest that SG_E_30_P1 (=DSM 111415=NCAIM B.02656) represents the type strain of a novel genus and species for which the name gen. nov., sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006205
2023-12-18
2024-05-06
Loading full text...

Full text loading...

References

  1. Evtushenko LI. Microbacteriaceae. In Bergey’s Manual of Systematic of Archaea and Bacteria 2015 pp 1–14 [View Article]
    [Google Scholar]
  2. Behrendt U, Ulrich A, Schumann P, Naumann D, Suzuki KI. Diversity of grass-associated Microbacteriaceae isolated from the phyllosphere and litter layer after mulching the sward; polyphasic characterization of Subtercola pratensis sp. nov., Curtobacterium herbarum sp. nov. and Plantibacter flavus gen. nov., sp. nov. Int J Syst Evol Microbiol 2002; 52:1441–1454 [View Article] [PubMed]
    [Google Scholar]
  3. Kämpfer P, Rainey FA, Andersson MA, Nurmiaho Lassila EL, Ulrych U et al. Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae. Int J Syst Evol Microbiol 2000; 50 Pt 1:355–363 [View Article] [PubMed]
    [Google Scholar]
  4. Alvarado P, Huang Y, Wang J, Garrido I, Leiva S. Phylogeny and bioactivity of epiphytic Gram-positive bacteria isolated from three co-occurring antarctic macroalgae. Antonie van Leeuwenhoek 2018; 111:1543–1555 [View Article]
    [Google Scholar]
  5. Cardinale M, Grube M, Berg G. Frondihabitans cladoniiphilus sp. nov., an actinobacterium of the family Microbacteriaceae isolated from lichen, and emended description of the genus Frondihabitans. Int J Syst Evol Microbiol 2011; 61:3033–3038 [View Article] [PubMed]
    [Google Scholar]
  6. Toumi M, Abbaszade G, Sbaoui Y, Farkas R, Ács É et al. Cultivation and molecular studies to reveal the microbial communities of groundwaters discharge located in Hungary. Water 2021; 13:1533 [View Article]
    [Google Scholar]
  7. Kalwasińska A, Felfoldi T, Walczak M, Kosobucki P. Physiology and molecular phylogeny of bacteria isolated from alkaline distillery lime. Pol J Microbiol 2015; 64:369–377 [View Article]
    [Google Scholar]
  8. Carbonnelle E, Mesquita C, Bille E, Day N, Dauphin B et al. MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin Biochem 2011; 44:104–109 [View Article] [PubMed]
    [Google Scholar]
  9. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49:1–7 [View Article] [PubMed]
    [Google Scholar]
  10. Thorn K. A quick guide to light microscopy in cell biology. Mol Biol Cell 2016; 27:219–222 [View Article] [PubMed]
    [Google Scholar]
  11. Golding CG, Lamboo LL, Beniac DR, Booth TF. The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci Rep 2016; 6:26516 [View Article] [PubMed]
    [Google Scholar]
  12. Tóth EM, Schumann P, Borsodi AK, Kéki Z, Kovács AL et al. Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol 2008; 58:976–981 [View Article] [PubMed]
    [Google Scholar]
  13. Tóth EM, Vengring A, Homonnay ZG, Kéki Z, Spröer C et al. Phreatobacter oligotrophus gen. nov., sp. nov., an alphaproteobacterium isolated from ultrapure water of the water purification system of a power plant. Int J Syst Evol Microbiol 2014; 64:839–845 [View Article] [PubMed]
    [Google Scholar]
  14. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  15. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B et al. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 1997; 47:1129–1133 [View Article] [PubMed]
    [Google Scholar]
  16. Stead DE, Sellwood JE, Wilson J, Viney I. Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 1992; 72:315–321 [View Article]
    [Google Scholar]
  17. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  18. Rathsack K. Reclassification of Aurantimonas altamirensis (Jurado et al. 2006), Aurantimonas ureilytica (Weon et al. 2007) and Aurantimonas frigidaquae (Kim et al. 2008) as members of a new genus, Aureimonas gen. nov., as Aureimonas altamirensis gen. nov., comb. nov. Int J Syst Evol Microbiol 2006; 61:2722–2728 [View Article] [PubMed]
    [Google Scholar]
  19. Tóth E, Szuróczki S, Kéki Z, Kosztik J, Makk J et al. Brevundimonas balnearis sp. nov., isolated from the well water of a thermal bath. Int J Syst Evol Microbiol 2017; 67:1033–1038 [View Article] [PubMed]
    [Google Scholar]
  20. Stecher G, Tamura K, Kumar S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol Biol Evol 2020; 37:1237–1239 [View Article] [PubMed]
    [Google Scholar]
  21. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  22. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–6 [View Article] [PubMed]
    [Google Scholar]
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  24. Gascuel O, Steel M. Neighbor-joining revealed. Mol Biol Evol 2006; 23:1997–2000 [View Article] [PubMed]
    [Google Scholar]
  25. Leggett RM, Ramirez-Gonzalez RH, Clavijo BJ, Waite D, Davey RP. Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Front Genet 2013; 4:288 [View Article] [PubMed]
    [Google Scholar]
  26. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  27. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:1–15 [View Article] [PubMed]
    [Google Scholar]
  28. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  30. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016 [View Article]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  32. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:1–12 [View Article] [PubMed]
    [Google Scholar]
  33. Ganzert L, Bajerski F, Mangelsdorf K, Lipski A, Wagner D. Leifsonia psychrotolerans sp. nov., a psychrotolerant species of the family Microbacteriaceae from Livingston Island, Antarctica. Int J Syst Evol Microbiol 2011; 61:1938–1943 [View Article] [PubMed]
    [Google Scholar]
  34. Kim S-J, Lim J-M, Ahn J-H, Weon H-Y, Hamada M et al. Description of Galbitalea soli gen. nov., sp. nov., and Frondihabitans sucicola sp. nov. Int J Syst Evol Microbiol 2014; 64:572–578 [View Article] [PubMed]
    [Google Scholar]
  35. Tuo L, Yan XR, Li FN, Yang C, An MB et al. Amnibacterium flavum sp. nov., a novel endophytic actinobacterium isolated from bark of Nerium indicum Mill. Int J Syst Evol Microbiol 2019; 69:285–290 [View Article] [PubMed]
    [Google Scholar]
  36. Gu Z, Liu Y, Xu B, Wang N, Shen L et al. Description of Conyzicola nivalis sp. nov., isolated from glacial snow, and emended description of the genus Conyzicola and Conyzicola lurida. Int J Syst Evol Microbiol 2017; 67:2818–2822 [View Article] [PubMed]
    [Google Scholar]
  37. Li J, Lu S, Jin D, Yang J, Lai X-H et al. Salinibacterium hongtaonis sp. nov., isolated from faeces of Tibetan antelope (Pantholops hodgsonii) on the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2019; 69:1093–1098 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006205
Loading
/content/journal/ijsem/10.1099/ijsem.0.006205
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error