1887

Abstract

An orange-coloured bacterium, designated as strain GRR-S3-23, was isolated from a tidal flat sediment collected from Garorim Bay, Chuncheongbuk-do, Republic of Korea. Cells of GRR-S3-23 were aerobic, Gram-stain-negative, rod-shaped and motile. GRR-S3-23 grew at 18–40 °C (optimum, 30 °C), pH 7.0–9.0 (optimum, pH 7.0) and with 2–4 % NaCl (optimum, 2–3 % w/v). Results of 16S rRNA gene sequence analysis indicated that GRR-S3-23 was closely related to a4 (97.6 %), followed by SMK-4 (97.5 %), MBIC 1140 (97.4 %), TLL-A2 (97.3 %), JO-1 (97.2 %),and YKTF-3 (97.1 %). The average amino acid identity values between GRR-S3-23 and the related strains were 86.8–72.8 %, the average nucleotide identity values were 83.3–74.1 %, and the digital DNA–DNA hybridization values were 27.0–19.6 %. GRR-S3-23 possessed menaquinone-6 (MK-6) as major respiratory quinone and had summed feature 3 (Cω7 and/or Cω6, 20.6 %) and iso-CG (10.8 %) as major fatty acids (>10.0 %). The polar lipid profiles of GRR-S3-23 contained phosphatidylethanolamine, one unidentified aminolipid, one unidentified aminophospholipid, three unidentified lipids, one unidentified glycolipid and four unidentified phospholipids. The DNA G+C content of GRR-S3-23 was 33.7%. On the basis of the results of the polyphasic analysis involving phylogenetic, phylogenomic, physiological and chemotaxonomic analyses described in this study, GRR-S3-23 is considered to represent a novel species within the genus , for which the name is proposed. The type strain is GRR-S3-23 (=KCTC 102029=KACC 23271=JCM 36353).

Funding
This study was supported by the:
  • Development of living shoreline technology based on blue carbon science toward climate change adaptation" of Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (KIMST-20220526) (Award KIMST-20220526)
    • Principle Award Recipient: Hyun LeeSang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006203
2023-12-20
2024-05-08
Loading full text...

Full text loading...

References

  1. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S. Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for. Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 2001; 51:1639–1652 [View Article] [PubMed]
    [Google Scholar]
  2. Wang L, Li X, Hu D, Lai Q, Shao Z. Tenacibaculum holothuriorum sp. nov., isolated from the sea cucumber Apostichopus japonicus intestine. Int J Syst Evol Microbiol 2015; 65:4347–4352 [View Article] [PubMed]
    [Google Scholar]
  3. Kim Y-O, Park I-S, Park S, Nam B-H, Park J-M et al. Tenacibaculum ascidiaceicola sp. nov., isolated from the golden sea squirt Halocynthia aurantium . Int J Syst Evol Microbiol 2016; 66:1174–1179 [View Article] [PubMed]
    [Google Scholar]
  4. Kim Y-O, Park I-S, Park S, Nam B-H, Park J-M et al. Tenacibaculum haliotis sp. nov., isolated from the gut of an abalone Haliotis discus hannai . Int J Syst Evol Microbiol 2017; 67:3268–3273 [View Article] [PubMed]
    [Google Scholar]
  5. Shin S-K, Kim E, Yi H. Tenacibaculum todarodis sp. nov., isolated from a squid. Int J Syst Evol Microbiol 2018; 68:1479–1483 [View Article] [PubMed]
    [Google Scholar]
  6. Kristyanto S, Kim KR, Jung J, Kim HM, Kim K et al. Tenacibaculum aquimarinum sp. nov., isolated from a marine alga and seawater. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  7. Yoon J-H, Kang S-J, Oh T-K. Tenacibaculum lutimaris sp. nov., isolated from a tidal flat in the Yellow Sea, Korea. Int J Syst Evol Microbiol 2005; 55:793–798 [View Article] [PubMed]
    [Google Scholar]
  8. Choi DH, Kim Y-G, Hwang CY, Yi H, Chun J et al. Tenacibaculum litoreum sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2006; 56:635–640 [View Article] [PubMed]
    [Google Scholar]
  9. Jung S-Y, Oh T-K, Yoon J-H. Tenacibaculum aestuarii sp. nov., isolated from a tidal flat sediment in Korea. Int J Syst Evol Microbiol 2006; 56:1577–1581 [View Article] [PubMed]
    [Google Scholar]
  10. Park S, Yoon J-H. Tenacibaculum caenipelagi sp. nov., a member of the family Flavobacteriaceae isolated from tidal flat sediment. Antonie van Leeuwenhoek 2013; 104:225–231 [View Article] [PubMed]
    [Google Scholar]
  11. Park S, Ha M-J, Jung Y-T, Kang C-H, Yoon J-H. Tenacibaculum sediminilitoris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:2610–2616 [View Article] [PubMed]
    [Google Scholar]
  12. Park S, Choi SJ, Won S-M, Yoon J-H. Tenacibaculum aestuariivivum sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:4612–4618 [View Article]
    [Google Scholar]
  13. Park S, Choi J, Choi SJ, Yoon J-H. Tenacibaculum insulae sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2018; 68:228–233 [View Article] [PubMed]
    [Google Scholar]
  14. Shang D-D, Lun H-Y, Zhu K-L, Chen G-J, Du Z-J. Tenacibaculum pelagium sp. nov., isolated from marine sediment. Arch Microbiol 2021; 203:2229–2236 [View Article] [PubMed]
    [Google Scholar]
  15. Suzuki M. Tenacibaculum . In Bergey’s Manual of Systematics of Archaea and Bacteria 2015 pp 1–7 [View Article]
    [Google Scholar]
  16. Hopwood DA. Genetic Manipulation of Streptomyces: A Laboratory Manual John Innes Foundation; 1985
    [Google Scholar]
  17. Takizawa M, Colwell RR, Hill RT. Isolation and diversity of actinomycetes in the Chesapeake Bay. Appl Environ Microbiol 1993; 59:997–1002 [View Article] [PubMed]
    [Google Scholar]
  18. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  19. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  20. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  22. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  24. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  25. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  26. Muhammad N, Le Han H, Lee Y-J, Ko J, Nguyen TTH et al. Flavobacterium litorale sp. nov., isolated from red alga. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  27. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  28. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  29. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  30. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  31. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article] [PubMed]
    [Google Scholar]
  32. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  33. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 2017; 45:W36–W41 [View Article] [PubMed]
    [Google Scholar]
  34. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  36. Shields P, Cathcart L. Motility test medium protocol. American Society for Microbiology 2011
    [Google Scholar]
  37. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article]
    [Google Scholar]
  38. Collins MD. 11 Analysis of isoprenoid quinones. In Methods in Microbiology Elsevier; 1985 pp 329–366
    [Google Scholar]
  39. Kroppenstedt R. Fatty acid and menaquinone analysis of actinomycetes and related organisms. Chemical methods in bacterial systematics 1985:173–199
    [Google Scholar]
  40. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006203
Loading
/content/journal/ijsem/10.1099/ijsem.0.006203
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error