1887

Abstract

A Gram-stain-positive, rod-shaped, facultatively anaerobic and homofermentative strain, named WILCCON 0030, was isolated from sauerkraut (fermented cabbage) collected from a local market in the Moscow region of Russia. Comparative analyses based on 16S rRNA gene sequence similarity and whole genome relatedness indicated that strain WILCCON 0030 was most closely related to the type strains NCIMB 15186, LMG 31171 and LMG 31176. However, the average nucleotide identity and digital DNA–DNA hybridization prediction values with these closest relatives only ranged from 84.6 to 84.9 % and from 24.1 to 24.7 %, respectively, and were below the 95.0 and 70.0% thresholds for species delineation. Substantiated by further physiological and biochemical analyses, strain WILCCON 0030 represents a novel species within the genus for which we propose the name sp. nov. (type strain WILCCON 0030=DSM 116485=LMG 33211).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006194
2023-12-08
2024-05-08
Loading full text...

Full text loading...

References

  1. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB et al. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70:2782–2858 [View Article]
    [Google Scholar]
  2. Salvetti E, Torriani S, Felis GE. The genus Lactobacillus: a taxonomic update. Probiotics Antimicrob Proteins 2012; 4:217–226 [View Article] [PubMed]
    [Google Scholar]
  3. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  4. Duar RM, Lin XB, Zheng J, Martino ME, Grenier T et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev 2017; 41:S27–S48 [View Article] [PubMed]
    [Google Scholar]
  5. Martino ME, Bayjanov JR, Caffrey BE, Wels M, Joncour P et al. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environ Microbiol 2016; 18:4974–4989 [View Article] [PubMed]
    [Google Scholar]
  6. Gu CT, Li CY, Yang LJ, Huo GC. Lactobacillus mudanjiangensis sp. nov., Lactobacillus songhuajiangensis sp. nov. and Lactobacillus nenjiangensis sp. nov., isolated from Chinese traditional pickle and sourdough. Int J Syst Evol Microbiol 2013; 63:4698–4706 [View Article] [PubMed]
    [Google Scholar]
  7. Gu CT, Wang F, Li CY, Liu F, Huo GC. Lactobacillus xiangfangensis sp. nov., isolated from Chinese pickle. Int J Syst Evol Microbiol 2012; 62:860–863 [View Article] [PubMed]
    [Google Scholar]
  8. Liu DD, Gu CT. Lactobacillus pingfangensis sp. nov., Lactobacillus daoliensis sp. nov., Lactobacillus nangangensis sp. nov., Lactobacillus daowaiensis sp. nov., Lactobacillus dongliensis sp. nov., Lactobacillus songbeiensis sp. nov. and Lactobacillus kaifaensis sp. nov. Int J Syst Evol Microbiol 2019; 69:3237–3247 [View Article]
    [Google Scholar]
  9. Miyashita M, Yukphan P, Chaipitakchonlatarn W, Malimas T, Sugimoto M et al. Lactobacillus plajomi sp. nov. and Lactobacillus modestisalitolerans sp. nov., isolated from traditional fermented foods. Int J Syst Evol Microbiol 2015; 65:2485–2490 [View Article] [PubMed]
    [Google Scholar]
  10. Mao Y, Chen M, Horvath P. Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum. Int J Syst Evol Microbiol 2015; 65:4682–4688 [View Article] [PubMed]
    [Google Scholar]
  11. De Bruyne K, Camu N, De Vuyst L, Vandamme P. Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations. Int J Syst Evol Microbiol 2009; 59:7–12 [View Article] [PubMed]
    [Google Scholar]
  12. Diaz M, Sayavedra L, Atter A, Mayer MJ, Saha S et al. Lactobacillus garii sp. nov., isolated from a fermented cassava product. Int J Syst Evol Microbiol 2020; 70:3012–3017 [View Article] [PubMed]
    [Google Scholar]
  13. Bringel F, Castioni A, Olukoya DK, Felis GE, Torriani S et al. Lactobacillus plantarum subsp. Argentoratensis subsp. nov., isolated from vegetable matrices. Int J Syst Evol Microbiol 2005; 55:1629–1634 [View Article] [PubMed]
    [Google Scholar]
  14. Curk MC, Hubert JC, Bringel F. Lactobacillus paraplantarum sp. now., a new species related to Lactobacillus plantarum. Int J Syst Bacteriol 1996; 46:595–598 [View Article] [PubMed]
    [Google Scholar]
  15. Eilers T, Dillen J, Van de Vliet N, Wittouck S, Lebeer S. Lactiplantibacillus carotarum AMBF275T sp. nov. isolated from carrot juice fermentation. Int J Syst Evol Microbiol 2023; 73:005976 [View Article] [PubMed]
    [Google Scholar]
  16. Qiu H, Chang X, Luo Y, Shen F, Yin A et al. Regulation of Nir gene in Lactobacillus plantarum WU14 mediated by GlnR. Front Microbiol 2022; 13:983485 [View Article]
    [Google Scholar]
  17. Brooijmans RJW, de Vos WM, Hugenholtz J. Lactobacillus plantarum WCFS1 electron transport chains. Appl Environ Microbiol 2009; 75:3580–3585 [View Article] [PubMed]
    [Google Scholar]
  18. Abdulhussain Kareem R, Razavi SH. Plantaricin bacteriocins: as safe alternative antimicrobial peptides in food preservation - a review. J Food Saf 2020; 40:e12735 [View Article]
    [Google Scholar]
  19. Seddik HA, Bendali F, Gancel F, Fliss I, Spano G et al. Lactobacillus plantarum and its probiotic and food potentialities. Probiotics Antimicrob Proteins 2017; 9:111–122 [View Article] [PubMed]
    [Google Scholar]
  20. Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S et al. Update of the list of qualified presumption of safety (QPS) recommended microorganisms intentionally added to food or feed as notified to EFSA. EFS J 2023; 21:e07747 [View Article]
    [Google Scholar]
  21. Son S-H, Yang S-J, Jeon H-L, Yu H-S, Lee N-K et al. Antioxidant and immunostimulatory effect of potential probiotic Lactobacillus paraplantarum SC61 isolated from Korean traditional fermented food, jangajji. Microb Pathog 2018; 125:486–492 [View Article] [PubMed]
    [Google Scholar]
  22. Forsythe P. Probiotics and lung diseases. Chest 2011; 139:901–908 [View Article] [PubMed]
    [Google Scholar]
  23. Arsène MMJ, Davares AKL, Andreevna SL, Vladimirovich EA, Carime BZ et al. The use of probiotics in animal feeding for safe production and as potential alternatives to antibiotics. Vet World 2021; 14:319–328 [View Article] [PubMed]
    [Google Scholar]
  24. Schoster A, Weese JS, Guardabassi L. Probiotic use in horses - what is the evidence for their clinical efficacy?. J Vet Intern Med 2014; 28:1640–1652 [View Article] [PubMed]
    [Google Scholar]
  25. Yang KM, Jiang ZY, Zheng CT, Wang L, Yang XF. Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88. J Anim Sci 2014; 92:1496–1503 [View Article] [PubMed]
    [Google Scholar]
  26. Gao Y, Liu Y, Ma F, Sun M, Song Y et al. Lactobacillus plantarum Y44 alleviates oxidative stress by regulating gut microbiota and colonic barrier function in Balb/C mice with subcutaneous d-galactose injection. Food Funct 2021; 12:373–386 [View Article] [PubMed]
    [Google Scholar]
  27. Lee CS, Kim SH. Anti-inflammatory and anti-osteoporotic potential of Lactobacillus plantarum A41 and L. fermentum SRK414 as probiotics. Probiotics Antimicrob Proteins 2020; 12:623–634 [View Article] [PubMed]
    [Google Scholar]
  28. Siddeeg A, Afzaal M, Saeed F, Ali R, Shah YA et al. Recent updates and perspectives of fermented healthy super food sauerkraut: a review. Int J Food Prop 2022; 25:2320–2331 [View Article]
    [Google Scholar]
  29. Peñas E, Martinez-Villaluenga C, Frias J. Sauerkraut: Production, composition, and health benefits. In Fermented Foods in Health and Disease Prevention Academic Press; 2017 pp 557–576 [View Article]
    [Google Scholar]
  30. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  31. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  32. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  33. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  34. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  35. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  36. Lagkouvardos I, Joseph D, Kapfhammer M, Giritli S, Horn M et al. IMNGS: a comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci Rep 2016; 6:1–9 [View Article] [PubMed]
    [Google Scholar]
  37. Hitch TCA, Riedel T, Oren A, Overmann J, Lawley TD et al. Automated analysis of genomic sequences facilitates high-throughput and comprehensive description of bacteria. ISME Commun 2021; 1:1–16 [View Article] [PubMed]
    [Google Scholar]
  38. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  39. Lee S, Nguyen LT, Hayes BJ, Ross EM. Prowler: a novel trimming algorithm for Oxford Nanopore sequence data. Bioinformatics 2021; 37:3936–3937 [View Article] [PubMed]
    [Google Scholar]
  40. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  41. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes De Novo assembler. Curr Protoc Bioinformatics 2020; 70:e102 [View Article] [PubMed]
    [Google Scholar]
  42. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017; 27:737–746 [View Article] [PubMed]
    [Google Scholar]
  43. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:1–9 [View Article] [PubMed]
    [Google Scholar]
  44. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  45. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  46. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  47. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article] [PubMed]
    [Google Scholar]
  48. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28:27–30 [View Article] [PubMed]
    [Google Scholar]
  49. Zheng J, Ge Q, Yan Y, Zhang X, Huang L et al. dbCAN3: automated carbohydrate-active enzyme and substrate annotation. Nucleic Acids Res 2023; 1:13–14 [View Article] [PubMed]
    [Google Scholar]
  50. van Heel AJ, de Jong A, Song C, Viel JH, Kok J et al. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 2018; 46:W278–W281 [View Article] [PubMed]
    [Google Scholar]
  51. Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res 2018; 46:E35 [View Article] [PubMed]
    [Google Scholar]
  52. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. In Analytical Methods vol 8 Royal Society of Chemistry; 2016 pp 12–24 [View Article]
    [Google Scholar]
  53. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  54. Heng YC, Menon N, Chen B, Loo BZL, Wong GWJ et al. Ligilactobacillus ubinensis sp. nov., a novel species isolated from the wild ferment of a durian fruit (Durio zibethinus). Int J Syst Evol Microbiol 2023; 73:005733 [View Article] [PubMed]
    [Google Scholar]
  55. Wittouck S, Wuyts S, Meehan CJ, van Noort V, Lebeer S. A genome-based species taxonomy of the Lactobacillus genus complex. mSystems 2019; 4:e00264-19 [View Article] [PubMed]
    [Google Scholar]
  56. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  57. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  58. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  59. Zheng J, Ruan L, Sun M, Gänzle M, Björkroth J. A genomic view of Lactobacilli and Pediococci demonstrates that phylogeny matches ecology and physiology. Appl Environ Microbiol 2015; 81:7233–7243 [View Article] [PubMed]
    [Google Scholar]
  60. Hernández VM, Arteaga A, Dunn MF. Diversity, properties and functions of bacterial arginases. FEMS Microbiol Rev 2021; 45:fuab034 [View Article]
    [Google Scholar]
  61. Rossi M, Amaretti A, Raimondi S. Folate production by probiotic bacteria. In Nutrients vol 3 Molecular Diversity Preservation International; 2011 pp 118–134 [View Article]
    [Google Scholar]
  62. Montero-Calasanz MDC, Yaramis A, Rohde M, Schumann P, Klenk H-P et al. Genotype-phenotype correlations within the Geodermatophilaceae. Front Microbiol 2022; 13:975365 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006194
Loading
/content/journal/ijsem/10.1099/ijsem.0.006194
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error