1887

Abstract

Two novel strains, SA3-5 and SA3-6, were isolated from a tidal flat (getbol) in the Republic of Korea. Strains SA3-5 and SA3-6 were subjected to polyphasic characterization to determine their taxonomic affiliations. Cells were Gram-stain-negative, aerobic, rod-shaped and motile by using peritrichous flagella. Based on their 16S rRNA gene sequences, strains SA3-5 and SA3-6 exhibited a high degree of similarity (100 %) and were classified within the genus . Furthermore, the closest related species to SA3-5 and SA3-6 were MS-3 (98.3 %). The ranges of average nucleotide identity and digital DNA–DNA hybridization values between SA3-5 and closely related species were 75.9–89.1% and 21.3–38.7%, respectively, both of which being below the thresholds for delineating novel strains. Strain SA3-5 and SA3-6 contained C 6 and/or C 7 (summed feature 3), C and C 6 and/or C 7 (summed feature 8) as the major fatty acids. The predominant respiratory quinone was Q-9. The DNA G+C content of strain SA3-5 was 62.5 mol%. Based on their combined phenotypic, chemotaxonomic and phylogenetic characterisitics, strains SA3-5 and SA3-6 represent a novel species of the genus for which the name sp. nov. is proposed. The type strain is SA3-5 (=KCTC 92395=JCM 35697).

Keyword(s): Getbol , Pseudomonas , taxonomy and tidal flat
Funding
This study was supported by the:
  • Korea Research Institute of Bioscience and Biotechnology (Award KGM5232322)
    • Principle Award Recipient: Jung-SookLee
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006190
2023-12-04
2024-05-08
Loading full text...

Full text loading...

References

  1. Chung C-H, Lee HJ, Kim CB, Koh YK, Oh KH. Geological and geomorphological characteristics of uninhabited Docho Islands, Southwestern coast of Korea. J Island Cult 2008; 31:261–280
    [Google Scholar]
  2. Han G-H, Xiao G, Lee Y-H, Kim Y-R, Lee C-K. Estimation of the preservation value of the Sinan mudflat as world natural heritage for sustainable tourism: using a two-step scenario of the contingent valuation method. Int J Tour Hospital Res 2022; 36:37–52 [View Article]
    [Google Scholar]
  3. Muthukumar B, Al Salhi MS, Narenkumar J, Devanesan S et al. Characterization of two novel strains of Pseudomonas aeruginosa on biodegradation of crude oil and its enzyme activities. Environ Pollut 2022; 304:119223 [View Article] [PubMed]
    [Google Scholar]
  4. Brzeszcz J, Kaszycki P. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility. Biodegradation 2018; 29:359–407 [View Article] [PubMed]
    [Google Scholar]
  5. Wang W, Shao Z. Enzymes and genes involved in aerobic alkane degradation. Front Microbiol 2013; 4:116 [View Article] [PubMed]
    [Google Scholar]
  6. Liang J-L, Nie Y, Wang M, Xiong G, Wang Y-P et al. Regulation of alkane degradation pathway by a TetR family repressor via an autoregulation positive feedback mechanism in a Gram-positive Dietzia bacterium. Mol Microbiol 2016; 99:338–359 [View Article] [PubMed]
    [Google Scholar]
  7. van Beilen JB, Panke S, Lucchini S, Franchini AG, Röthlisberger M et al. Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 2001; 147:1621–1630 [View Article] [PubMed]
    [Google Scholar]
  8. Pan J, Wei F, Liu Y, Xu Y, Ma Y. Unravelling the role of GntR on the regulation of alkane hydroxylase AlkB2 in Pseudomonas aeruginosa DN1 based on transcriptome analysis. J Appl Microbiol 2022; 132:2812–2822 [View Article] [PubMed]
    [Google Scholar]
  9. Mullaeva SA, Delegan YA, Streletskii RA, Sazonova OI, Petrikov KV et al. Pseudomonas veronii strain 7-41 degrading medium-chain n-alkanes and polycyclic aromatic hydrocarbons. Sci Rep 2022; 12:20527 [View Article] [PubMed]
    [Google Scholar]
  10. Barathi S, Vasudevan N. Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Environ Int 2001; 26:413–416 [View Article] [PubMed]
    [Google Scholar]
  11. Xu J, Liu H, Liu J, Liang R. Isolation and characterization of Pseudomonas aeruginosa strain SJTD-2 for degrading long-chain n-alkanes and crude oil. Wei Sheng Wu Xue Bao 2015; 55:755–763 [PubMed]
    [Google Scholar]
  12. Singh S, Kumari B, Mishra S. Microbial degradation of alkanes. In Microbial Degradation of Xenobiotics vol 2012 pp 439–469 [View Article]
    [Google Scholar]
  13. Migula W. Über ein neues System der Bakterien. Arbeiten aus dem bakteriologischen Institut der technischen Hochschule zu Karlsruhe; 1894
  14. Pascual J, García-López M, Carmona C, Sousa T da S, de Pedro N et al. Pseudomonas soli sp. nov., a novel producer of xantholysin congeners. Syst Appl Microbiol 2014; 37:412–416 [View Article] [PubMed]
    [Google Scholar]
  15. Nicklasson M, Martín-Rodríguez AJ, Thorell K, Higdon SM, Neves L et al. Pseudomonas boanensis sp. nov., a bacterium isolated from river water used for household purposes in Boane District, Mozambique. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  16. Aragone MR, Maurizi DM, Clara LO, Navarro Estrada JL, Ascione A. Pseudomonas mendocina, an environmental bacterium isolated from a patient with human infective endocarditis. J Clin Microbiol 1992; 30:1583–1584 [View Article] [PubMed]
    [Google Scholar]
  17. J PN. Genus I. Pseudomonas Migula 1894, 237AL. In Brenner DJ, K NR, Staley JT, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology, 2nd. edn New York: Springer; 2005 pp 323–379
    [Google Scholar]
  18. Palleroni NJ. Genus I. Pseudomonas. In Bergey’s Manual of Systematic Bacteriology, 1st. edn Baltimore: Williams & Wilkins; 1984 pp 141–199
    [Google Scholar]
  19. Yang G, Han L, Wen J, Zhou S. Pseudomonas guangdongensis sp. nov., isolated from an electroactive biofilm, and emended description of the genus Pseudomonas Migula 1894. Int J Syst Evol Microbiol 2013; 63:4599–4605 [View Article] [PubMed]
    [Google Scholar]
  20. Suh MK, Lee KC, Kim J-S, Han K-I, Kim HS et al. Nocardioides cynanchi sp. nov., isolated from soil of rhizosphere of Cynanchum wilfordii. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  21. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  22. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic Acids Symposium Series London: Information Retrieval Ltd; 1999 pp c1979–c2000
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  28. Lee D-H, Moon S-R, Park Y-H, Kim J-H, Kim H et al. Pseudomonas taeanensis sp. nov., isolated from a crude oil-contaminated seashore. Int J Syst Evol Microbiol 2010; 60:2719–2723 [View Article]
    [Google Scholar]
  29. Kong D, Li Q, Zhou Y, Wang Y, Jiang X et al. Pseudomonas tumuqii sp. nov., isolated from greenhouse soil. Arch Microbiol 2022; 204:249 [View Article] [PubMed]
    [Google Scholar]
  30. Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 2015; 38:237–245 [View Article] [PubMed]
    [Google Scholar]
  31. Salerno A, Delétoile A, Lefevre M, Ciznar I, Krovacek K et al. Recombining population structure of Plesiomonas shigelloides (Enterobacteriaceae) revealed by multilocus sequence typing. J Bacteriol 2007; 189:7808–7818 [View Article] [PubMed]
    [Google Scholar]
  32. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A et al. Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 2000; 146 (Pt 10):2385–2394 [View Article] [PubMed]
    [Google Scholar]
  33. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article]
    [Google Scholar]
  34. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  35. Nei M, Kumar S. Molecular Evolution and Phylogenetics USA: Oxford University Press; 2000 [View Article]
    [Google Scholar]
  36. Escalante AE, Caballero-Mellado J, Martínez-Aguilar L, Rodríguez-Verdugo A, González-González A et al. Pseudomonas cuatrocienegasensis sp. nov., isolated from an evaporating lagoon in the Cuatro Cienegas valley in Coahuila, Mexico. Int J Syst Evol Microbiol 2009; 59:1416–1420 [View Article]
    [Google Scholar]
  37. Vanparys B, Heylen K, Lebbe L, De Vos P. Pseudomonas peli sp. nov. and Pseudomonas borbori sp. nov., isolated from a nitrifying inoculum. Int J Syst Evol Microbiol 2006; 56:1875–1881 [View Article]
    [Google Scholar]
  38. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  39. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article]
    [Google Scholar]
  40. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 2021; 38:5825–5829 [View Article]
    [Google Scholar]
  41. Ji N, Wang X, Yin C, Peng W, Liang R. CrgA protein represses AlkB2 monooxygenase and regulates the degradation of medium-to-long-chain n-alkanes in Pseudomonas aeruginosa SJTD-1. Front Microbiol 2019; 10:400 [View Article]
    [Google Scholar]
  42. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  43. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article]
    [Google Scholar]
  44. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article]
    [Google Scholar]
  45. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D et al. Toward an online repository of standard operating procedures (SOPs) for (meta)genomic annotation. OMICS 2008; 12:137–141 [View Article]
    [Google Scholar]
  46. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nd edn Baltimore: Williams & Wilkins; 1967
    [Google Scholar]
  47. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note 101 Newark, DE: MIDI inc; 1990
    [Google Scholar]
  48. Komagata K, Suzuki K-I. 4 lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006190
Loading
/content/journal/ijsem/10.1099/ijsem.0.006190
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error