1887

Abstract

Two novel strains, STR1-7 and STR1S-6, were isolated from the rhizosphere of a plant growing in the Salar de Tara region of the Atacama Desert, Chile. Chemotaxonomic, cultural and phenotypic features confirmed that the isolates belonged to the genus . They grew from 20 to 37 °C, from pH7 to 8 and in the presence of up to 3 %, w/v NaCl. The isolates formed distinct branches in gene trees based on 16S rRNA gene sequences and on a multi-locus sequence analysis of conserved house-keeping genes. A phylogenomic tree generated from the draft genomes of the isolates and their closest phylogenetic neighbours showed that isolate STR1-7 is most closely related to S2509, and isolate STR1S-6 forms a distinct branch that is most closely related to 12 validly named species, including the earliest proposed member of the group. The isolates were separated from one another and from their closest phylogenomic neighbours using a combination of chemotaxonomic, genomic and phenotypic features, and by low average nucleotide index and digital DNA–DNA hybridization values. Consequently, it is proposed that isolates STR1-7 and STR1S-6 be recognized as representing new species in the genus , namely as sp. nov. and sp. nov.; the type strains are STR1-7 (=CECT 9665=LMG 30768) and STR1S-6 (=CECT 9666=LMG 30770), respectively. Genome mining showed that the isolates have the capacity to produce novel specialized metabolites, notably antibiotics and compounds that promote plant growth, as well as a broad-range of stress-related genes that provide an insight into how they cope with harsh abiotic conditions that prevail in high-altitude Atacama Desert soils.

Funding
This study was supported by the:
  • Newton Fund (Award Grant JIC CA586)
    • Principle Award Recipient: JuanA. Asenjo
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006189
2023-12-07
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/12/ijsem006189.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006189&mimeType=html&fmt=ahah

References

  1. Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 2021; 71:005056 [View Article] [PubMed]
    [Google Scholar]
  2. Goodfellow M. Actinobacteria phyl. nov. In Goodfellow M, Kämpfer P, Busse HJ. eds Bergey’s Manual of Systematics of Bacteriology New York: Springer 2012; pp 33–34
    [Google Scholar]
  3. Baltz RH. Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol 2017; 44:573–588 [View Article] [PubMed]
    [Google Scholar]
  4. Baltz RH. Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities. J Ind Microbiol Biotechnol 2019; 46:281–299 [View Article] [PubMed]
    [Google Scholar]
  5. Rateb ME, Ebel R, Jaspars M. Natural product diversity of actinobacteria in the Atacama Desert. Antonie van Leeuwenhoek 2018; 111:1467–1477 [View Article] [PubMed]
    [Google Scholar]
  6. Sayed AM, Hassan MHA, Alhadrami HA, Hassan HM, Goodfellow M et al. Extreme environments: microbiology leading to specialized metabolites. J Appl Microbiol 2020; 128:630–657 [View Article] [PubMed]
    [Google Scholar]
  7. Bull AT, Asenjo JA, Goodfellow M, Gómez-Silva B. The Atacama desert: technical resources and the growing importance of novel microbial diversity. Annu Rev Microbiol 2016; 70:215–234 [View Article] [PubMed]
    [Google Scholar]
  8. Bull AT, Goodfellow M. Dark, rare and inspirational microbial matter in the extremobiosphere: 16000 m of bioprospecting campaigns. Microbiology 2019; 165:1252–1264 [View Article] [PubMed]
    [Google Scholar]
  9. Bull AT, Idris H, Sanderson R, Asenjo J, Andrews B et al. High altitude, hyper-arid soils of the central-andes harbor mega-diverse communities of actinobacteria. Extremophiles 2018; 22:47–57 [View Article] [PubMed]
    [Google Scholar]
  10. Idris H, Goodfellow M, Sanderson R, Asenjo JA, Bull AT. Actinobacterial rare biospheres and dark matter revealed in habitats of the Chilean Atacama Desert. Sci Rep 2017; 7:8373 [View Article] [PubMed]
    [Google Scholar]
  11. Goodfellow M, Nouioui I, Sanderson R, Xie F, Bull AT. Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama Desert soils. Antonie van Leeuwenhoek 2018; 111:1315–1332 [View Article] [PubMed]
    [Google Scholar]
  12. Idris H, Nouioui I, Pathom-Aree W, Castro JF, Bull AT et al. Amycolatopsis vastitatis sp. nov., an isolate from a high altitude subsurface soil on Cerro Chajnantor, northern Chile. Antonie van Leeuwenhoek 2018; 111:1523–1533 [View Article] [PubMed]
    [Google Scholar]
  13. Carro L, Castro JF, Razmilic V, Nouioui I, Pan C et al. Uncovering the potential of novel micromonosporae isolated from an extreme hyper-arid Atacama Desert soil. Sci Rep 2019; 9:4678 [View Article] [PubMed]
    [Google Scholar]
  14. Carro L, Golinska P, Nouioui I, Bull AT, Igual JM et al. Micromonospora acroterricola sp. nov., a novel actinobacterium isolated from a high altitude Atacama Desert soil. Int J Syst Evol Microbiol 2019; 69:3426–3436 [View Article] [PubMed]
    [Google Scholar]
  15. Trujillo ME, Idris H, Riesco R, Nouioui I, Igual JM et al. Pseudonocardia nigra sp. nov., isolated from Atacama Desert rock. Int J Syst Evol Microbiol 2017; 67:2980–2985 [View Article] [PubMed]
    [Google Scholar]
  16. Adamek M, Alanjary M, Sales-Ortells H, Goodfellow M, Bull AT et al. Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species. BMC Genomics 2018; 19:426 [View Article] [PubMed]
    [Google Scholar]
  17. Carro L, Nouioui I, Sangal V, Meier-Kolthoff JP, Trujillo ME et al. Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential. Sci Rep 2018; 8:1–23 [View Article] [PubMed]
    [Google Scholar]
  18. Sangal V, Goodfellow M, Blom J, Tan GYA, Klenk H-P et al. Revisiting the taxonomic status of the biomedically and industrially important genus Amycolatopsis, using a phylogenomic approach. Front Microbiol 2018; 9:2281 [View Article] [PubMed]
    [Google Scholar]
  19. Busarakam K, Bull AT, Trujillo ME, Riesco R, Sangal V et al. Modestobacter caceresii sp. nov., novel actinobacteria with an insight into their adaptive mechanisms for survival in extreme hyper-arid Atacama Desert soils. Syst Appl Microbiol 2016; 39:243–251 [View Article] [PubMed]
    [Google Scholar]
  20. Castro JF, Nouioui I, Sangal V, Choi S, Yang S-J et al. Blastococcus atacamensis sp. nov., a novel strain adapted to life in the Yungay core region of the Atacama Desert. Int J Syst Evol Microbiol 2018; 68:2712–2721 [View Article] [PubMed]
    [Google Scholar]
  21. Castro JF, Nouioui I, Sangal V, Trujillo ME, Montero-Calasanz MDC et al. Geodermatophilus chilensis sp. nov., from soil of the Yungay core-region of the Atacama Desert, Chile. Syst Appl Microbiol 2018; 41:427–436 [View Article] [PubMed]
    [Google Scholar]
  22. Krasil’nikov N. Ray Fungi and Related Organisms - Actinomycetales Moscow: Akademii Nauk SSSR 1938;
    [Google Scholar]
  23. Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009; 59:589–608 [View Article] [PubMed]
    [Google Scholar]
  24. Ørskov J. Investigations into the Morphology of the Ray Fungi Copenhagen, Denmark: Levin and Munksgaard; 1923
    [Google Scholar]
  25. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014; 105:307–315 [View Article] [PubMed]
    [Google Scholar]
  26. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:2007 [View Article] [PubMed]
    [Google Scholar]
  27. Genilloud O. Micromonospora Ørskov 1923, 156AL. In Goodfellow M, Kämpfer P, Busse HJ. eds Bergey’s Manual of Systematics of BacteriologyThe Actinobacteria, Part B, 2nd. edn vol 5 New York: Springer; 2012 pp 1939–1057
    [Google Scholar]
  28. Genilloud O, Family I. Micromonosporaceae Krasil’nikov 1938, 272AL emend Zhi, Li and Stackebrandt 2009, 599. In Goodfellow M, Kämpfer P, Busse HJ. eds Bergey’s Manual of Systematic BacteriologyThe Actinobacteria, Part B, 2nd. edn vol 5 New York: Springer; 2012 pp 1035–1038
    [Google Scholar]
  29. Carro L, Pukall R, Spröer C, Kroppenstedt RM, Trujillo ME. Micromonospora halotolerans sp. nov., isolated from the rhizosphere of a Pisum sativum plant. Antonie van Leeuwenhoek 2013; 103:1245–1254 [View Article] [PubMed]
    [Google Scholar]
  30. Carro L, Razmilic V, Nouioui I, Richardson L, Pan C et al. Hunting for cultivable Micromonospora strains in soils of the Atacama Desert. Antonie van Leeuwenhoek 2018; 111:1375–1387 [View Article] [PubMed]
    [Google Scholar]
  31. Kaewkla O, Thamchaipinet A, Franco CMM. Micromonospora terminaliae sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of the medicinal plant Terminalia mucronata. Int J Syst Evol Microbiol 2017; 67:225–230 [View Article] [PubMed]
    [Google Scholar]
  32. Kuncharoen N, Pittayakhajonwut P, Tanasupawat S. Micromonospora globbae sp. nov., an endophytic actinomycete isolated from roots of Globba winitii C. H. Wright. Int J Syst Evol Microbiol 2018; 68:1073–1077 [View Article] [PubMed]
    [Google Scholar]
  33. Riesco R, Ortúzar M, Román-Ponce B. Six novel Micromonospora species associated with the phyllosphere and roots of leguminous plants: Micromonospora alfalfae sp. nov., Micromonospora cabrerizensis sp. nov., Micromonospora foliorum sp. nov., Micromonospora hortensis sp. nov., Micromonospora salmantinae sp. nov., and Micromonospora trifolii sp. nov. Int J Syst Evol Microbiol 2022; 72:005680
    [Google Scholar]
  34. Carro L, Spröer C, Alonso P, Trujillo ME. Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 2012; 35:73–80 [View Article] [PubMed]
    [Google Scholar]
  35. Carro L, Pujic P, Trujillo ME, Normand P. Micromonospora is a normal occupant of actinorhizal nodules. J Biosci 2013; 38:685–693 [View Article] [PubMed]
    [Google Scholar]
  36. Carro L, Riesco R, Spröer C. Micromonospora ureilytica sp. nov., Micromonospora noduli sp. nov. and Micromonospora vinacea sp. nov., isolated from Pisum sativum nodules. Int J Syst Evol Microbiol 2016; 66:3509–3514 [View Article] [PubMed]
    [Google Scholar]
  37. Carro L, Veyisoglu A, Riesco R. Micromonospora phytophila sp. nov. and Micromonospora luteiviridis sp. nov., isolated as natural inhabitants of plant nodules. Int J Syst Evol Microbiol 2018; 68:248–253 [View Article] [PubMed]
    [Google Scholar]
  38. Trujillo ME, Alonso-Vega P, Rodríguez R, Carro L, Cerda E et al. The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. ISME J 2010; 4:1265–1281 [View Article] [PubMed]
    [Google Scholar]
  39. Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Thecnol 1987; 65:501–509 [View Article]
    [Google Scholar]
  40. Hayakawa M, Sadakata T, Kajiura T, Nonomura H. New methods for the highly selective isolation of Micromonospora and Microbispora from soil. J Ferment Bioeng 1991; 72:320–326 [View Article]
    [Google Scholar]
  41. Nonomura H, Ohara Y. Distribution of actinomycetes in soil. VI. A culture method effective for both preferential isolation and enumeration of Microbispora and Streptosporangium in soil (part I). J Ferment Technol 1969; 47:463–469
    [Google Scholar]
  42. Zhang J, Zhang L. Improvement of an isolation medium for actinomycetes. Mod Appl Sci 2011; 5:124–127 [View Article]
    [Google Scholar]
  43. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  44. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  45. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article] [PubMed]
    [Google Scholar]
  46. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article] [PubMed]
    [Google Scholar]
  47. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  48. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  49. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  50. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  51. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  52. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  53. Ara I, Kudo T. Two new species of the genus Micromonospora: Micromonospora chokoriensis sp . nov . and Micromonospora coxensis sp . nov ., isolated from sandy soil. J Gen Appl Microbiol 2007; 53:29–37 [View Article] [PubMed]
    [Google Scholar]
  54. Veyisoglu A, Carro L, Cetin D, Igual JM, Klenk H-P et al. Micromonospora orduensis sp. nov., isolated from deep marine sediment. Antonie van Leeuwenhoek 2020; 113:397–405 [View Article] [PubMed]
    [Google Scholar]
  55. Trujillo ME, Kroppenstedt RM, Fernández-Molinero C. Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. Int J Syst Evol Microbiol 2007; 57:2799–2804 [View Article] [PubMed]
    [Google Scholar]
  56. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol 2012; 35:7–18 [View Article] [PubMed]
    [Google Scholar]
  57. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  58. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. MASH: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:1–14 [View Article] [PubMed]
    [Google Scholar]
  59. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  60. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  61. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  62. Wayne LG, Brenner DJ, Colwell RR. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  63. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  64. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2018; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  65. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  66. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [View Article]
    [Google Scholar]
  67. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  68. Kroppenstedt RM, Goodfellow M et al. The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillospora and Thermomonospora. In Dworkin M, Falkow S, Schleifer KH. eds The Prokaryotes New York: Springer; 2006 pp 682–724
    [Google Scholar]
  69. Collins MD. Analysis of isoprenoid quinones. In Bergan T. eds Methods in Microbiology Academic Press; 1985 pp 329–366
    [Google Scholar]
  70. Sasser M. Technical Note No. 101: Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI; 1990
    [Google Scholar]
  71. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 1977; 5:249–260 [View Article]
    [Google Scholar]
  72. Doetsch R. No title. In Gerhardt P, Murray R, Costilow R. eds Manual of Methods for General Bacteriology Washington, DC: 1981 pp 21–35
    [Google Scholar]
  73. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  74. Vaas LAI, Sikorski J, Hofner B, Fiebig A, Buddruhs N et al. opm: an R package for analysing OmniLog(R) phenotype microarray data. Bioinformatics 2013; 29:1823–1824 [View Article] [PubMed]
    [Google Scholar]
  75. Vaas LAI, Sikorski J, Michael V, Göker M, Klenk H-P. Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS One 2012; 7:e34846 [View Article] [PubMed]
    [Google Scholar]
  76. Weber T, Blin K, Duddela S, Krug D, Kim HU et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 2015; 43:W237–W243 [View Article] [PubMed]
    [Google Scholar]
  77. Hori S, Shirai M, Hirano S, Oki T, Inai T et al. Antitumor activity of new anthracycline antibiotics, Aclacinomycin-A and its Analgs, and their toxicity. Jpn J Cancer Res 1977; 68:685–690
    [Google Scholar]
  78. Alvarez-Mico X, Jensen PR, Fenical W, Hughes CC. Chlorizidine, a cytotoxic 5H-pyrrolo[2,1-a]isoindol-5-one-containing alkaloid from a marine Streptomyces sp. Org Lett 2013; 15:988–991 [View Article] [PubMed]
    [Google Scholar]
  79. Goodfellow M, Stach JEM, Brown R, Bonda ANV, Jones AL et al. Verrucosispora maris sp. nov., a novel deep-sea actinomycete isolated from a marine sediment which produces abyssomicins. Antonie van Leeuwenhoek 2012; 101:185–193 [View Article] [PubMed]
    [Google Scholar]
  80. Trujillo ME, Riesco R, Benito P, Carro L. Endophytic actinobacteria and the interaction of Micromonospora and nitrogen fixing plants. Front Microbiol 2015; 6:1–15 [View Article] [PubMed]
    [Google Scholar]
  81. Hirsch AM, Valdés M. Micromonospora: an important microbe for biomedicine and potentially for biocontrol and biofuels. Soil Biology and Biochemistry 2010; 42:536–542 [View Article]
    [Google Scholar]
  82. Nouioui I, Cortés-Albayay C, Carro L, Castro JF, Gtari M et al. Genomic insights into plant-growth-promoting potentialities of the genus Frankia. Front Microbiol 2019; 10:1–15 [View Article] [PubMed]
    [Google Scholar]
  83. Song H, Dharmasena MN, Wang C, Shaw GX, Cherry S et al. Structure and activity of PPX/GppA homologs from Escherichia coli and Helicobacter pylori. FEBS J 2020; 287:1865–1885 [View Article] [PubMed]
    [Google Scholar]
  84. Willsky GR, Malamy MH. Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J Bacteriol 1980; 144:356–365 [View Article] [PubMed]
    [Google Scholar]
  85. Carro L, Nouioui I. Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microbiol 2017; 3:383–412 [View Article] [PubMed]
    [Google Scholar]
  86. Lambrecht JA, Downs DM. Anthranilate phosphoribosyl transferase (TrpD) generates phosphoribosylamine for thiamine synthesis from enamines and phosphoribosyl pyrophosphate. ACS Chem Biol 2013; 8:242–248 [View Article] [PubMed]
    [Google Scholar]
  87. Wandersman C, Delepelaire P. Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 2004; 58:611–647 [View Article] [PubMed]
    [Google Scholar]
  88. Acuña JJ, Campos M, Mora M de la L, Jaisi DP, Jorquera MA. ACCD-producing rhizobacteria from an Andean Altiplano native plant (Parastrephia quadrangularis) and their potential to alleviate salt stress in wheat seedlings. Appl Soil Ecol 2019; 136:184–190 [View Article]
    [Google Scholar]
  89. Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 2014; 169:30–39 [View Article] [PubMed]
    [Google Scholar]
  90. Trujillo ME, Bacigalupe R, Pujic P, Igarashi Y, Benito P et al. Genome features of the endophytic actinobacterium Micromonospora lupini strain lupac 08: on the process of adaptation to an endophytic life style?. PLoS One 2014; 9:e108522 [View Article] [PubMed]
    [Google Scholar]
  91. Ortúzar M, Trujillo ME, Román-Ponce B, Carro L. Micromonospora metallophores: a plant growth promotion trait useful for bacterial-assisted phytoremediation?. Sci Total Environ 2020; 739:139850 [View Article] [PubMed]
    [Google Scholar]
  92. Essoussi I, Ghodhbane-Gtari F, Amairi H, Sghaier H, Jaouani A et al. Esterase as an enzymatic signature of Geodermatophilaceae adaptability to Sahara desert stones and monuments. J Appl Microbiol 2010; 108:1723–1732 [View Article] [PubMed]
    [Google Scholar]
  93. Normand P, Gury J, Pujic P, Chouaia B, Crotti E et al. Genome sequence of radiation-resistant Modestobacter marinus strain BC501, a representative actinobacterium that thrives on calcareous stone surfaces. J Bacteriol 2012; 194:4773–4774 [View Article] [PubMed]
    [Google Scholar]
  94. Wietzke M, Bahl H. The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum. Appl Microbiol Biotechnol 2012; 96:749–761 [View Article] [PubMed]
    [Google Scholar]
  95. Gardner AM, Gardner PR. Flavohemoglobin detoxifies nitric oxide in aerobic, but not anaerobic, Escherichia coli. Evidence for a novel inducible anaerobic nitric oxide-scavenging activity. J Biol Chem 2002; 277:8166–8171 [View Article] [PubMed]
    [Google Scholar]
  96. Gómez-Silva B. Lithobiontic life: “Atacama rocks are well and alive.”. Antonie van Leeuwenhoek 2018; 111:1333–1343 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006189
Loading
/content/journal/ijsem/10.1099/ijsem.0.006189
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error