1887

Abstract

The naming of prokaryotes is governed by the International Code of Nomenclature of Prokaryotes (ICNP) and partially by the International Code of Nomenclature for Algae, Fungi and Plants (ICN). Such codes must be able to determine names of taxa in a universal and unambiguous manner, thus serving as a common language across different fields and activities. This unity is undermined when a new code of nomenclature emerges that overlaps in scope with an established, time-tested code and uses the same format of names but assigns different nomenclatural status values to the names. The resulting nomenclatural confusion is not beneficial to the wider scientific community. Such ambiguity is expected to result from the establishment of the ‘Code of Nomenclature of Prokaryotes Described from DNA Sequence Data’ (‘SeqCode’), which is in general and specific conflict with the ICNP and the ICN. Shortcomings in the interpretation of the ICNP may have exacerbated the incompatibility between the codes. It is reiterated as to why proposals to accept sequences as nomenclatural types of species and subspecies with validly published names, now implemented in the SeqCode, have not been implemented by the International Committee on Systematics of Prokaryotes (ICSP), which oversees the ICNP. The absence of certain regulations from the ICNP for the naming of as yet uncultivated prokaryotes is an acceptable scientific argument, although it does not justify the establishment of a separate code. Moreover, the proposals rejected by the ICSP are unnecessary to adequately regulate the naming of uncultivated prokaryotes. To provide a better service to the wider scientific community, an alternative proposal to emend the ICNP is presented, which would result in names being regulated analogously to validly published names. This proposal is fully consistent with previous ICSP decisions, preserves the essential unity of nomenclature and avoids the expected nomenclatural confusion.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006188
2024-01-05
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/1/ijsem006188.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006188&mimeType=html&fmt=ahah

References

  1. Ride W, Cogger HG, Dupuis C, Kraus O, Minelli A et al. International Code of Zoological Nomenclature London: International Trust for Zoological Nomenclature; 1999 [View Article]
    [Google Scholar]
  2. Turland N, Wiersema J, Barrie F, Greuter W, Hawksworth D et al. International Code of Nomenclature for Algae, Fungi, and Plants Königstein im Taunus: Koeltz Botanical Books; 2018 [View Article]
    [Google Scholar]
  3. Oren A, Arahal DR, Göker M, Moore ERB, Rossello-Mora R et al. International Code of Nomenclature of Prokaryotes. Prokaryotic code (2022 Revision). Int J Syst Evol Microbiol 2023; 73:5585 [View Article] [PubMed]
    [Google Scholar]
  4. Whitman WB, Bull CT, Busse H-J, Fournier P-E, Oren A et al. Request for revision of the statutes of the International Committee on Systematics of Prokaryotes. Int J Syst Evol Microbiol 2019; 69:584–593 [View Article] [PubMed]
    [Google Scholar]
  5. Murray RG, Stackebrandt E. Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 1995; 45:186–187 [View Article] [PubMed]
    [Google Scholar]
  6. Pallen MJ. The status Candidatus for uncultured taxa of Bacteria and Archaea: SWOT analysis. Int J Syst Evol Microbiol 2021; 71:5000 [View Article]
    [Google Scholar]
  7. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  8. Pallen MJ, Rodriguez-R LM, Alikhan NF. Naming the unnamed: over 65,000 Candidatus names for unnamed Archaea and Bacteria in the genome taxonomy database. Int J Syst Evol Microbiol 2022; 72:5482 [View Article]
    [Google Scholar]
  9. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of Prokaryotes – Prokaryotic Code (2008 revision). Int J Syst Evol Microbiol 2019; 69:S1–S111
    [Google Scholar]
  10. Oren A, Garrity GM. Candidatus list no. 2. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2021; 71:004671 [View Article] [PubMed]
    [Google Scholar]
  11. Oren A, Garrity GM. Candidatus list no.3. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2022; 72:005186
    [Google Scholar]
  12. Whitman WB. Genome sequences as the type material for taxonomic descriptions of prokaryotes. Syst Appl Microbiol 2015; 38:217–222 [View Article] [PubMed]
    [Google Scholar]
  13. Whitman WB. Modest proposals to expand the type material for naming of prokaryotes. Int J Syst Evol Microbiol 2016; 66:2108–2112 [View Article] [PubMed]
    [Google Scholar]
  14. Whitman WB, Sutcliffe IC, Rossello-Mora R. Proposal for changes in the International Code of Nomenclature of Prokaryotes: granting priority to Candidatus names. Int J Syst Evol Microbiol 2019; 69:2174–2175 [View Article] [PubMed]
    [Google Scholar]
  15. Rosselló-Móra R, Whitman WB. Dialogue on the nomenclature and classification of prokaryotes. Syst Appl Microbiol 2019; 42:5–14 [View Article] [PubMed]
    [Google Scholar]
  16. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  17. Rossello-Mora R, Konstantinidis KT, Sutcliffe I, Whitman W. Opinion: response to concerns about the use of DNA sequences as types in the nomenclature of prokaryotes. Syst Appl Microbiol 2020; 43:126070 [View Article] [PubMed]
    [Google Scholar]
  18. Bisgaard M, Christensen H, Clermont D, Dijkshoorn L, Janda JM et al. The use of genomic DNA sequences as type material for valid publication of bacterial species names will have severe implications for clinical microbiology and related disciplines. Diagn Microbiol Infect Dis 2019; 95:102–103 [View Article] [PubMed]
    [Google Scholar]
  19. Overmann J, Huang S, Nübel U, Hahnke RL, Tindall BJ. Relevance of phenotypic information for the taxonomy of not-yet-cultured microorganisms. Syst Appl Microbiol 2019; 42:22–29 [View Article] [PubMed]
    [Google Scholar]
  20. Sutcliffe IC, Dijkshoorn L, Whitman WB, Executive Board O. Minutes of the International Committee on Systematics of Prokaryotes online discussion on the proposed use of gene sequences as type for naming of prokaryotes, and outcome of vote. Int J Syst Evol Microbiol 2020; 70:4416–4417 [View Article] [PubMed]
    [Google Scholar]
  21. Oren A, Garrity GM. Uncultivated microbes-in need of their own nomenclature?. ISME J 2018; 12:309–311 [View Article] [PubMed]
    [Google Scholar]
  22. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG. Genetic diversity in Sargasso Sea bacterioplankton. Nature 1990; 345:60–63 [View Article] [PubMed]
    [Google Scholar]
  23. Murray AE, Freudenstein J, Gribaldo S, Hatzenpichler R, Hugenholtz P et al. Roadmap for naming uncultivated Archaea and Bacteria. Nat Microbiol 2020; 5:987–994 [View Article] [PubMed]
    [Google Scholar]
  24. Palmer M, Sutcliffe I, Venter SN, Hedlund BP. It is time for a new type of type to facilitate naming the microbial world. New Microbes New Infect 2022; 47:100991 [View Article] [PubMed]
    [Google Scholar]
  25. Whitman WB, Chuvochina M, Hedlund BP, Hugenholtz P, Konstantinidis KT et al. Development of the SeqCode: a proposed nomenclatural code for uncultivated prokaryotes with DNA sequences as type. Syst Appl Microbiol 2022; 45:126305 [View Article] [PubMed]
    [Google Scholar]
  26. Hedlund BP, Chuvochina M, Hugenholtz P, Konstantinidis KT, Murray AE et al. SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat Microbiol 2022; 7:1702–1708 [View Article] [PubMed]
    [Google Scholar]
  27. Oren A. Nomenclature of prokaryotic “Candidatus” taxa: establishing order in the current chaos. New Microbes New Infect 2021; 44:100932 [View Article] [PubMed]
    [Google Scholar]
  28. Göker M, Moore ERB, Oren A, Trujillo ME. Status of the SeqCode in the International Journal of Systematic and Evolutionary Microbiology. Int J Syst Evol Microbiol 2022; 72:5754 [View Article] [PubMed]
    [Google Scholar]
  29. Amann R, Springer N, Schönhuber W, Ludwig W, Schmid EN et al. Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl Environ Microbiol 1997; 63:115–121 [View Article] [PubMed]
    [Google Scholar]
  30. Everett KD, Bush RM, Andersen AA. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 1999; 49:415–440 [View Article] [PubMed]
    [Google Scholar]
  31. Bayer B, Vojvoda J, Offre P, Alves RJE, Elisabeth NH et al. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J 2016; 10:1051–1063 [View Article] [PubMed]
    [Google Scholar]
  32. Bayer B, Vojvoda J, Reinthaler T, Reyes C, Pinto M. Nitrosopumilus adriaticus sp. nov. and Nitrosopumilus piranensis sp. nov., two ammonia-oxidizing archaea from the Adriatic Sea and members of the class Nitrososphaeria. Int J Syst Evol Microbiol 2019; 69:1892–1902
    [Google Scholar]
  33. Blackall LL, Seviour EM, Bradford D, Rossetti S, Tandoi V et al. Candidatus Nostocoida limicola”, a filamentous bacterium from activated sludge. Int J Syst Evol Microbiol 2000; 50:703–709 [View Article] [PubMed]
    [Google Scholar]
  34. McKenzie CM, Seviour EM, Schumann P, Maszenan AM, Liu JR et al. Isolates of Candidatus Nostocoida limicola Blackall et al. 2000 should be described as three novel species of the genus Tetrasphaera, as Tetrasphaera jenkinsii sp. nov., Tetrasphaera vanveenii sp. nov. and Tetrasphaera veronensis sp. nov. Int J Syst Evol Microbiol 2015; 56:2279–2290
    [Google Scholar]
  35. Kambouris ME, Pavlidis C, Skoufas E, Arabatzis M, Kantzanou M et al. Culturomics: a new kid on the block of OMICS to enable personalized medicine. OMICS 2018; 22:108–118 [View Article] [PubMed]
    [Google Scholar]
  36. Bilen M, Dufour J-C, Lagier J-C, Cadoret F, Daoud Z et al. The contribution of culturomics to the repertoire of isolated human bacterial and archaeal species. Microbiome 2018; 6:94 [View Article] [PubMed]
    [Google Scholar]
  37. Abdallah RA, Beye M, Diop A, Bakour S, Raoult D et al. The impact of culturomics on taxonomy in clinical microbiology. Antonie van Leeuwenhoek 2017; 110:1327–1337 [View Article] [PubMed]
    [Google Scholar]
  38. Durán-Viseras A, Andrei A-Ş, Vera-Gargallo B, Ghai R, Sánchez-Porro C et al. Culturomics-based genomics sheds light on the ecology of the new haloarchaeal genus Halosegnis. Environ Microbiol 2021; 23:3418–3434 [View Article] [PubMed]
    [Google Scholar]
  39. Durán-Viseras A, Sánchez-Porro C, Viver T, Konstantinidis KT, Ventosa A. Discovery of the streamlined haloarchaeon Halorutilus salinus, comprising a new order widespread in hypersaline environments across the world. mSystems 2023; 8:e0119822 [View Article] [PubMed]
    [Google Scholar]
  40. Lawson AJ, Linton D, Stanley J. 16S rRNA gene sequences of “Candidatus Campylobacter hominis”, a novel uncultivated species, are found in the gastrointestinal tract of healthy humans. Microbiology 1998; 144:2063–2071 [View Article] [PubMed]
    [Google Scholar]
  41. Lawson AJ, On SL, Logan JM, Stanley J. Campylobacter hominis sp. nov., from the human gastrointestinal tract. Int J Syst Evol Microbiol 2001; 51:651–660 [View Article] [PubMed]
    [Google Scholar]
  42. Weissman JL, Hou S, Fuhrman JA. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc Natl Acad Sci U S A 2021; 118:e2016810118 [View Article] [PubMed]
    [Google Scholar]
  43. León MJ, Fernández AB, Ghai R, Sánchez-Porro C, Rodriguez-Valera F et al. From metagenomics to pure culture: isolation and characterization of the moderately halophilic bacterium Spiribacter salinus gen. nov., sp. nov. Appl Environ Microbiol 2014; 80:3850–3857 [View Article] [PubMed]
    [Google Scholar]
  44. Buchanan RE, Holt JG, Lessel EFJr. Index Bergeyana Baltimore, MD: The Williams & Wilkins Company; 1966
    [Google Scholar]
  45. Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR et al. International Code of Nomenclature of Bacteria (1976 Revision). Bacteriological Code Washington, DC: American Society for Microbiology; 1975
    [Google Scholar]
  46. Skerman VBD, McGowan V, Sneath PHA. Approved lists of bacterial names. Int J Syst Bacteriol 1980; 30:225–420 [View Article]
    [Google Scholar]
  47. Sneath PHA. The preparation of the approved lists of bacterial names. Int J Syst Evol Microbiol 2005; 55:2247–2249 [View Article] [PubMed]
    [Google Scholar]
  48. Arahal DR, Busse H-J, Bull CT, Christensen H, Chuvochina M et al. Guidelines for interpreting the code and for writing a request for an opinion. Int J Syst Evol Microbiol 2023; 73:5782 [View Article] [PubMed]
    [Google Scholar]
  49. Nakamura LK. Bacillus alginolyticus sp. nov. and Bacillus chondroitinus sp. nov., two alginate-degrading species. Int J Syst Bacteriol 1987; 37:284–286 [View Article]
    [Google Scholar]
  50. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47:289–298 [View Article] [PubMed]
    [Google Scholar]
  51. Caspari R. Gesellschaften. Bericht über die Verhandlungen der botanischen Sektion der 33. Versammlung deutscher Naturforscher und Aerzte, gehalten in Bonn vom 18. bis 24. September 1857, von Dr. Rob. Caspary. Botanische Zeitung 1857; 15:749–776
    [Google Scholar]
  52. Tindall BJ. The family name Solimonadaceae Losey et al. 2013 is illegitimate, proposals to create the names “Sinobacter soli” comb. nov. and “Sinobacter variicoloris” contravene the code, the family name Xanthomonadaceae Saddler and Bradbury 2005 and the order name Xanthomonadales Saddler and Bradbury 2005 are illegitimate and notes on the application of the family names Solibacteraceae Zhou et al. 2008, Nevskiaceae Henrici and Johnson 1935 (approved lists 1980) and Lysobacteraceae Christensen and Cook 1978 (approved lists 1980) and order name Lysobacteriales Christensen and Cook 1978 (approved lists 1980) with respect to the classification of the corresponding type genera Solibacter Zhou et al. 2008, Nevskia Famintzin 1892 (approved lists 1980) and Lysobacter Christensen and Cook 1978 (approved lists 1980) and importance of accurately expressing the link between a taxonomic name, its authors and the corresponding description/circumscription/emendation. Int J Syst Evol Microbiol 2014; 64:293–297 [View Article] [PubMed]
    [Google Scholar]
  53. Whitman WB, Lawson PA, Losey NA. Response to Tindall (2014) on the legitimacy of the names Solimonadaceae Losey et al. 2013, Xanthomonadaceae Saddler and Bradbury 2005 and Xanthomonadales Saddler and Bradbury 2005. Int J Syst Evol Microbiol 2015; 65:1086–1087 [View Article] [PubMed]
    [Google Scholar]
  54. Tindall BJ. A commentary on the interpretation of the International Code of Nomenclature of Bacteria. Int J Syst Evol Microbiol 2015; 65:2334–2336 [View Article] [PubMed]
    [Google Scholar]
  55. Arahal DR, Bull CT, Busse H-J, Christensen H, Chuvochina M et al. Judicial Opinions 123-127. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  56. Oren A. Three alternative proposals to emend the rules of the International Code of Nomenclature of Prokaryotes to resolve the status of the Cyanobacteria in the prokaryotic nomenclature. Int J Syst Evol Microbiol 2020; 70:4406–4408 [View Article] [PubMed]
    [Google Scholar]
  57. Oren A, Arahal DR, Rosselló-Móra R, Sutcliffe IC, Moore ERB. Emendation of general consideration 5 and rules 18a, 24a and 30 of the International Code of Nomenclature of Prokaryotes to resolve the status of the Cyanobacteria in the prokaryotic nomenclature. Int J Syst Evol Microbiol 2021; 71:4939 [View Article] [PubMed]
    [Google Scholar]
  58. Rahi P. Regulating access can restrict participation in reporting new species and taxa. Nat Microbiol 2021; 6:1469–1470 [View Article] [PubMed]
    [Google Scholar]
  59. Oren A, Göker M, Hahnke RL, Moore ERB, Sutcliffe IC et al. ICSP response to “Regulating access can restrict participation in reporting new species and taxa.”. Nat Microbiol 2022; 7:1711–1712 [View Article] [PubMed]
    [Google Scholar]
  60. Göker M, Oren A. Proposal to include the categories kingdom and domain in the International code of nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2023; 73:5650
    [Google Scholar]
  61. Lloyd KG, Tahon G. Science depends on nomenclature, but nomenclature is not science. Nat Rev Microbiol 2022; 20:123–124 [View Article] [PubMed]
    [Google Scholar]
  62. Pinto RC. Post hoc, ergo propter hoc. In Argument, Inference and Dialectic: Collected Papers on Informal Logic with An Introduction by Hans V. Hansen Dordrecht: Springer Netherlands; 2001 pp 56–63 [View Article]
    [Google Scholar]
  63. Sutcliffe IC, Arahal DR, Göker M, Oren A. ICSP response to “Science depends on nomenclature, but nomenclature is not science.”. Nat Rev Microbiol 2022; 20:249–250 [View Article] [PubMed]
    [Google Scholar]
  64. Becker P, Bosschaerts M, Chaerle P, Daniel H-M, Hellemans A et al. Public microbial resource centers: key hubs for findable, accessible, interoperable, and reusable (FAIR) microorganisms and genetic materials. Appl Environ Microbiol 2019; 85:e01444-19 [View Article] [PubMed]
    [Google Scholar]
  65. Panda A, Islam ST, Sharma G, Zhulin IB. Harmonizing prokaryotic nomenclature: fixing the fuss over phylum name flipping. mBio 2022; 13:e0097022 [View Article] [PubMed]
    [Google Scholar]
  66. Oren A, Göker M, Sutcliffe IC. New phylum names harmonize prokaryotic nomenclature. mBio 2022; 13:e01479-22 [View Article] [PubMed]
    [Google Scholar]
  67. Tindall BJ. Misunderstanding the bacteriological code. Int J Syst Bacteriol 1999; 49:1313–1316 [View Article] [PubMed]
    [Google Scholar]
  68. Zamora JC, Svensson M, Kirschner R, Olariaga I, Ryman S et al. Considerations and consequences of allowing DNA sequence data as types of fungal taxa. IMA Fungus 2018; 9:167–175 [View Article] [PubMed]
    [Google Scholar]
  69. Karsch-Mizrachi I, Nakamura Y, Cochrane G. The International Nucleotide Sequence Database Collaboration. Nucleic Acids Res 2012; 40:D33–D37 [View Article] [PubMed]
    [Google Scholar]
  70. Peeters C, Depoorter E, Canck ED, Vandamme P. Genome sequence-based curation of PubMLST data challenges interspecies recombination in the Burkholderiacepacia complex. Future Microbiol 2020; 15:1091–1093 [View Article] [PubMed]
    [Google Scholar]
  71. Laver T, Harrison J, O’Neill PA, Moore K, Farbos A et al. Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol Detect Quantif 2015; 3:1–8 [View Article] [PubMed]
    [Google Scholar]
  72. Palmer M, Steenkamp ET, Blom J, Hedlund BP, Venter SN. All ANIs are not created equal: implications for prokaryotic species boundaries and integration of ANIs into polyphasic taxonomy. Int J Syst Evol Microbiol 2020; 70:2937–2948 [View Article] [PubMed]
    [Google Scholar]
  73. On SLW, Miller WG, Biggs PJ, Cornelius AJ, Vandamme P. A critical rebuttal of the proposed division of the genus Arcobacter into six genera using comparative genomic, phylogenetic, and phenotypic criteria. Syst Appl Microbiol 2020; 43:126108 [View Article] [PubMed]
    [Google Scholar]
  74. Seshadri R, Roux S, Huber KJ, Wu D, Yu S et al. Expanding the genomic encyclopedia of Actinobacteria with 824 isolate reference genomes. Cell Genom 2022; 2:100213 [View Article] [PubMed]
    [Google Scholar]
  75. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  76. Göker M. What can genome analysis offer for bacteria?. In Bridge P, Smith D, Stackebrandt E. eds Trends in the Systematics of Bacteria and Fungi Wallingford: CAB International; 2021 pp 255–281 [View Article]
    [Google Scholar]
  77. Lambrechts S, Willems A, Tahon G. Uncovering the uncultivated majority in antarctic soils: Toward a synergistic approach. Front Microbiol 2019; 10:242 [View Article] [PubMed]
    [Google Scholar]
  78. Padial JM, Miralles A, De la Riva I, Vences M. The integrative future of taxonomy. Front Zool 2010; 7:16 [View Article] [PubMed]
    [Google Scholar]
  79. da Silva M, Desmeth P, Venter SN, Shouche Y, Yurkov A. How legislations affect new taxonomic descriptions. Trends Microbiol 2023; 31:111–114 [View Article] [PubMed]
    [Google Scholar]
  80. Henkel JV, Vogts A, Werner J, Neu TR, Spröer C et al. Candidatus Sulfurimonas marisnigri sp. nov. and Candidatus Sulfurimonas baltica sp. nov., thiotrophic manganese oxide reducing chemolithoautotrophs of the class Campylobacteria isolated from the pelagic redoxclines of the Black Sea and the Baltic Sea. Syst Appl Microbiol 2021; 44:126155 [View Article] [PubMed]
    [Google Scholar]
  81. Oren A, Arahal DR, Rosselló-Móra R, Sutcliffe IC, Moore ERB. Emendation of rules 5b, 8, 15 and 22 of the International code of nomenclature of Prokaryotes to include the rank of phylum. Int J Syst Evol Microbiol 2021; 71:4851 [View Article] [PubMed]
    [Google Scholar]
  82. Oren A, Garrity GM, Trujillo ME. Registration of names of prokaryotic Candidatus taxa in the IJSEM. Int J Syst Evol Microbiol 2020; 70:3955 [View Article] [PubMed]
    [Google Scholar]
  83. Chaudhary DK, Dahal RH, Oren A, Kim J. Proposal of Nemorincola gen. nov. to replace the illegitimate prokaryotic genus name Nemorella Chaudhary et al. 2018. Int J Syst Evol Microbiol 2018; 68:1319–1320 [View Article] [PubMed]
    [Google Scholar]
  84. Deshmukh UB, Oren A. Proposal of Membranihabitans gen. nov. as a replacement name for the illegitimate prokaryotic generic name Membranicola Li et al. 2016. Int J Syst Evol Microbiol 2022; 72:5576 [View Article]
    [Google Scholar]
  85. Deshmukh UB. Proposal of Holzapfeliella gen. nov. and Litorivicinus gen. nov. as replacement names for the illegitimate prokaryotic generic names Holzapfelia Zheng et al. 2020 and Litoricola Kim et al. 2007, respectively. Int J Syst Evol Microbiol 2023; 73:5688
    [Google Scholar]
  86. Chuvochina M, Rinke C, Parks DH, Rappé MS, Tyson GW et al. The importance of designating type material for uncultured taxa. Syst Appl Microbiol 2019; 42:15–21 [View Article] [PubMed]
    [Google Scholar]
  87. Chen I-M, Chu K, Palaniappan K, Ratner A, Huang J et al. The IMG/M data management and analysis system v.6.0: new tools and advanced capabilities. Nucleic Acids Res 2021; 49:D751–D763 [View Article] [PubMed]
    [Google Scholar]
  88. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R et al. The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res 2020; 48:D606–D612 [View Article] [PubMed]
    [Google Scholar]
  89. Land ML, Hyatt D, Jun S-R, Kora GH, Hauser LJ et al. Quality scores for 32,000 genomes. Stand Genomic Sci 2014; 9:20 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006188
Loading
/content/journal/ijsem/10.1099/ijsem.0.006188
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error