1887

Abstract

A Gram-stain-positive, aerobic, rod-shaped, non-motile, yellowish and glossy strain, C31, was isolated from a wetland plant L. located south of Poyang Lake, Jiangxi Province, PR China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain C31 showed similarity values of lower than 97.0 % to other type species belonging to the genus . The genomic average nucleotide identity values between strain C31 and its reference type species ranged from 68.9–70.9 % and the digital DNA–DNA hybridization values were lower than 27.8 %. The genomic DNA G+C content of strain C31 was 41.9 mol%. The optimal growth temperature, pH and NaCl concentration were 37 °C, pH 7 and 0.5 %, respectively. The major cellular fatty acids (>5.0 %) of strain C31 were anteiso-C (73.7 %), anteiso-C (8.4 %) and iso-C (5.2 %). The polar lipids of strain C31 were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and unidentified phospholipids. The respiratory quinone was MK-7. Based on these phylogenetic and phenotypic characterizations, strain C31 represents a novel species within the genus . Therefore, the proposed name for this newly identified species is sp. nov. and the type strain is C31 (=CCTCC AB 2022349=KCTC 43565).

Funding
This study was supported by the:
  • National Key R&D Program of China (Award 2021YFD1500803)
    • Principle Award Recipient: YanshengLi
  • Jilin Province-CAS Special Program for High-Tech Industrialization in Science and Technology Cooperation (Award 2023SYHZ0046)
    • Principle Award Recipient: ZhenhuaYu
  • Strategic Priority Research Program of the Chinese Academy of Sciences (Award XDA28100200)
    • Principle Award Recipient: YanshengLi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006185
2023-11-28
2024-05-09
Loading full text...

Full text loading...

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993; 64:253–260 [View Article] [PubMed]
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  3. Wang L, Baek S-H, Cui Y, Lee H-G, Lee S-T. Paenibacillus sediminis sp. nov., a xylanolytic bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2012; 62:1284–1288 [View Article] [PubMed]
    [Google Scholar]
  4. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47:289–298 [View Article] [PubMed]
    [Google Scholar]
  5. Yang Y-J, Zhang Y-T, Chen G-Q, Cheng D, Qiu J-G et al. Paenibacillus shunpengii sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2018; 68:211–216 [View Article] [PubMed]
    [Google Scholar]
  6. Liu H, Lu L, Wang S, Yu M, Cao X et al. Paenibacillus tianjinensis sp. nov., isolated from corridor air. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  7. Liu Y, Zhai L, Wang R, Zhao R, Zhang X et al. Paenibacillus zeae sp. nov., isolated from maize (Zea mays L.) seeds. Int J Syst Evol Microbiol 2015; 65:4533–4538 [View Article] [PubMed]
    [Google Scholar]
  8. Guo X-Q, Gu J-Y, Yu Y-J, Zhang W-B, He L-Y et al. Paenibacillus susongensis sp. nov., a mineral-weathering bacterium. Int J Syst Evol Microbiol 2014; 64:3958–3963 [View Article] [PubMed]
    [Google Scholar]
  9. Yang L, Huang H-W, Wang Y, Kou Y-R, Yin M et al. Paenibacillus turpanensis sp. nov., isolated from a salt lake of Turpan city in Xinjiang province, north-west China. Arch Microbiol 2021; 203:77–83 [View Article]
    [Google Scholar]
  10. Huang X-F, Wang F-Z, Zhang W, Li J, Ling J et al. Paenibacillus abyssi sp. nov., isolated from an abyssal sediment sample from the Indian Ocean. Antonie van Leeuwenhoek 2014; 106:1089–1095 [View Article] [PubMed]
    [Google Scholar]
  11. Kim YS, Cha CJ. Paenibacillus translucens sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2018; 68:936–941 [View Article] [PubMed]
    [Google Scholar]
  12. Narsing Rao MP, Dong Z-Y, Kan Y, Dong L, Li S et al. Description of Paenibacillus tepidiphilus sp. nov., isolated from a tepid spring. Int J Syst Evol Microbiol 2020; 70:1977–1981 [View Article] [PubMed]
    [Google Scholar]
  13. Suominen I, Spröer C, Kämpfer P, Rainey FA, Lounatmaa K et al. Paenibacillus stellifer sp. nov., a cyclodextrin-producing species isolated from paperboard. Int J Syst Evol Microbiol 2003; 53:1369–1374 [View Article] [PubMed]
    [Google Scholar]
  14. Glaeser SP, Falsen E, Busse HJ, Kämpfer P. Paenibacillus vulneris sp. nov., isolated from a necrotic wound. Int J Syst Evol Microbiol 2013; 63:777–782 [View Article]
    [Google Scholar]
  15. Roux V, Fenner L, Raoult D. Paenibacillus provencensis sp. nov., isolated from human cerebrospinal fluid, and Paenibacillus urinalis sp. nov., isolated from human urine. Int J Syst Evol Microbiol 2008; 58:682–687 [View Article] [PubMed]
    [Google Scholar]
  16. Roux V, Raoult D. Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int J Syst Evol Microbiol 2004; 54:1049–1054 [View Article] [PubMed]
    [Google Scholar]
  17. Huang X, Hu B, Wang P, Chen X, Xu B. Microbial diversity in lake–river ecotone of Poyang Lake, China. Environ Earth Sci 2016; 75: [View Article]
    [Google Scholar]
  18. Ren Z, Qu X, Peng W, Yu Y, Zhang M. Nutrients drive the structures of bacterial communities in sediments and surface waters in the river-lake system of Poyang Lake. Water 2019; 11:930 [View Article]
    [Google Scholar]
  19. Li Y, Lin J, Huang Y, Yao Y, Wang X et al. Bioaugmentation-assisted phytoremediation of manganese and cadmium co-contaminated soil by Polygonaceae plants (Polygonum hydropiper L. and Polygonum lapathifolium L.) and Enterobacter sp. FM-1. Plant Soil 2020; 448:439–453 [View Article]
    [Google Scholar]
  20. Liu K, Yu F, Chen M, Zhou Z, Chen C et al. A newly found manganese hyperaccumulator--Polygonum lapathifolium Linn. Int J Phytoremediation 2016; 18:348–353 [View Article] [PubMed]
    [Google Scholar]
  21. Zhao JT, Liu XQ, Hang DF, Wu NF, Tian J. Screening method of functional microorganisms interacting with rice roots. Bio Protoc 2021e2003638
    [Google Scholar]
  22. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  28. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  29. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  30. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007; 23:673–679 [View Article] [PubMed]
    [Google Scholar]
  31. Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL et al. Rfam: updates to the RNA families database. Nucleic Acids Res 2009; 37:D136–40 [View Article] [PubMed]
    [Google Scholar]
  32. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  33. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [View Article] [PubMed]
    [Google Scholar]
  34. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  35. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–62 [View Article] [PubMed]
    [Google Scholar]
  36. Makarova KS, Wolf YI, Koonin EV. Archaeal clusters of orthologous genes (arCOGs): an update and application for analysis of shared features between Thermococcales, Methanococcales, and Methanobacteriales. Life 2015; 5:818–840 [View Article] [PubMed]
    [Google Scholar]
  37. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 2023; 51:W46–W50 [View Article] [PubMed]
    [Google Scholar]
  38. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  39. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  40. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  41. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  42. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  43. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  44. Wang Q, Han X-L, Huang Z-P, Huang S, An D-F et al. Faecalibacter rhinopitheci sp. nov., a bacterium isolated from the faeces of Rhinopithecus bieti. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  45. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  46. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  47. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  48. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
  49. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006185
Loading
/content/journal/ijsem/10.1099/ijsem.0.006185
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error