1887

Abstract

A novel Gram-stain-negative, long rod-shaped, aerobic, non-motile, non-spore-forming and orange-pigmented bacterium, designated LB-30, was isolated from activated sludge. Growth was observed at 15–40 °C (optimum 30 °C), pH 6.0–9.0 (optimum 7.0) and salinities of 0–3.0 % (w/v; optimum 2.0 %). LB-30 showed less than 89.9 % sequence similarities to the recognized taxa of the order . The results of phylogenetic analysis based on 16S rRNA gene sequences and phylogenomic tree indicated that LB-30 formed a distinct lineage within the order . The average amino acid identity (AAI) values between LB-30 and members of the related families Cyclobacteriaceae, Fulvivirgaceae, Roseivirgaceae, Reichenbachiellaceae, Cesiribacteraceae, and Hymenobacteraceae in the order were 50.5–54.6 %. The sole respiratory quinone of LB-31 was menaquinone 7 (MK-7). The major polar lipids were phosphatidylethanolamine, aminolipid and four unidentified lipids. The major fatty acids were iso-C, iso-CG and iso-C 3-OH. The DNA G+C content was 43.8 mol%, calculated from the genome sequence. On the basis of differences in the phenotypic, physiological and biochemical characteristics, and distinct phylogenetic relationships, strain LB-30 is proposed to represent a novel species in a novel genus for which the name gen. nov., sp. nov is proposed, within a novel family fam. nov. of the order . The type strain is LB-30 (=GDMCC 1.3629= KCTC 92689).

Funding
This study was supported by the:
  • Special fund for science and technology program of Jiangsu province (Award BM2022019)
    • Principle Award Recipient: QirongShen
  • Natural Science Foundation of Jiangxi Province (Award 20224BAB215005)
    • Principle Award Recipient: BinLiu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006175
2023-11-22
2024-05-08
Loading full text...

Full text loading...

References

  1. Krieg NR, Ludwig W, Euzéby J, Phylum WWB. Phylum XIV. Bacteroidetes phyl. nov. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. eds Bergey’s Manual of Systematic Bacteriology: Volume Four The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes New York, NY: Springer New York; pp 25–469
    [Google Scholar]
  2. Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 2021; 71:005056 [View Article]
    [Google Scholar]
  3. Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M et al. Genome-based taxonomic classification of Bacteroidetes. Front Microbiol 2016; 7:2003 [View Article] [PubMed]
    [Google Scholar]
  4. García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T et al. Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front Microbiol 2019; 10:2083 [View Article] [PubMed]
    [Google Scholar]
  5. Leadbetter ER. Cytophaga Winogradsky 1929, 577; Lewin 1969, 191 emend, mut. char. In Bergey’s Manual of Determinative Bacteriology 1974 pp 101–105
    [Google Scholar]
  6. Pan J, Sun C, Wang RJ, Wu M. Roseivirga marina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2015; 65:4239–4243 [View Article] [PubMed]
    [Google Scholar]
  7. Wong S-K, Park S, Lee J-S, Chul Lee K, Xavier Chiura H et al. Fabibacter misakiensis sp. nov., a marine bacterium isolated from coastal surface water. Int J Syst Evol Microbiol 2015; 65:3276–3280 [View Article] [PubMed]
    [Google Scholar]
  8. Cha I-T, Park S-J, Kim S-J, Kim J-G, Jung M-Y et al. Marinoscillum luteum sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2013; 63:3475–3480 [View Article] [PubMed]
    [Google Scholar]
  9. Wang Y-X, Liu Y-P, Huo Q-Q, Li Y-P, Feng F-Y et al. Mongoliibacter ruber gen. nov., sp. nov., a haloalkalitolerant bacterium of the family Cyclobacteriaceae isolated from a haloalkaline lake. Int J Syst Evol Microbiol 2016; 66:1088–1094 [View Article] [PubMed]
    [Google Scholar]
  10. Anil Kumar P, Srinivas TNR, Madhu S, Sravan R, Singh S et al. Cecembia lonarensis gen. nov., sp. nov., a haloalkalitolerant bacterium of the family Cyclobacteriaceae, isolated from a haloalkaline lake and emended descriptions of the genera Indibacter, Nitritalea and Belliella. Int J Syst Evol Microbiol 2012; 62:2252–2258 [View Article] [PubMed]
    [Google Scholar]
  11. Huang J, Han M, Fang B, Yang J, Xiao H et al. Aquiflexum lacus sp. nov., isolated from a lake sediment sample. Arch Microbiol 2021; 203:2911–2917 [View Article] [PubMed]
    [Google Scholar]
  12. Inan K, Kacagan M, Ozer A, Osman Belduz A, Canakci S. Algoriphagus trabzonensis sp. nov., isolated from freshwater, and emended description of Algoriphagus alkaliphilus. Int J Syst Evol Microbiol 2015; 65:2234–2240 [View Article] [PubMed]
    [Google Scholar]
  13. Duan Y-Y, Ming H, Dong L, Yin Y-R, Meng X-L et al. Cecembia rubra sp. nov., a thermophilic bacterium isolated from a hot spring sediment. Int J Syst Evol Microbiol 2015; 65:2118–2123 [View Article] [PubMed]
    [Google Scholar]
  14. Albuquerque L, Tiago I, Nobre MF, Veríssimo A, da Costa MS. Cecembia calidifontis sp. nov., isolated from a hot spring runoff, and emended description of the genus Cecembia. Int J Syst Evol Microbiol 2013; 63:1431–1436 [View Article] [PubMed]
    [Google Scholar]
  15. Hu B, Yang Q, Cai M, Tang Y-Q, Zhao G-F et al. Negadavirga shengliensis gen. nov., sp. nov., a novel member of the family Cyclobacteriaceae isolated from oil-contaminated saline soil. Antonie van Leeuwenhoek 2015; 107:1367 [View Article] [PubMed]
    [Google Scholar]
  16. Lian W-H, Li S, Lin Z-L, Han J-R, Mohamad OAA et al. Sabulibacter ruber gen. nov., sp. nov., a novel bacterium in the family Hymenobacteraceae, isolated from desert soil. Int J Syst Evol Microbiol 2022; 72:005248 [View Article] [PubMed]
    [Google Scholar]
  17. Anandham R, Weon H-Y, Kim S-J, Kim Y-S, Kwon S-W. Rhodocytophaga aerolata gen. nov., sp. nov., a new member of the family Cytophagaceae isolated from air. Int J Syst Evol Microbiol 2010; 60:1554–1558 [View Article] [PubMed]
    [Google Scholar]
  18. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 3, 2nd. edn Cold Springs Harb Lab Press; 1989
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  21. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  25. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S et al. ABySS 2.0: resource-efficient assembly of large genomes using a bloom filter. Genome Res 2017; 27:768–777 [View Article] [PubMed]
    [Google Scholar]
  26. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  27. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 4 [View Article]
    [Google Scholar]
  28. Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep 2016; 6:24373 [View Article] [PubMed]
    [Google Scholar]
  29. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article] [PubMed]
    [Google Scholar]
  30. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  31. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  32. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  33. Beveridge JT, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Methods for General and Molecular Microbiology, Third Edition. American Society of Microbiology; 2007 pp 19–33 [View Article]
    [Google Scholar]
  34. Fraser SL, Jorgensen JH. Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing. Antimicrob Agents Chemother 1997; 41:2738–2741 [View Article] [PubMed]
    [Google Scholar]
  35. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article] [PubMed]
    [Google Scholar]
  36. Dong XZ, Cai MY. General Bacterial Identification System Handbook Beijing, China: Scientific Press; 2001 pp 377–385
    [Google Scholar]
  37. Zhang J, Chen S-A, Zheng J-W, Cai S, Hang B-J et al. Catellibacterium nanjingense sp. nov., a propanil-degrading bacterium isolated from activated sludge, and emended description of the genus Catellibacterium. Int J Syst Evol Microbiol 2012; 62:495–499 [View Article]
    [Google Scholar]
  38. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 Newark, DE: MIDI, Inc; 1990
    [Google Scholar]
  39. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  40. Kates M. Techniques of Lipidology, 2nd. edn Amsterdam: Elsevier; 1986
    [Google Scholar]
  41. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  42. Tamaoka J, Katayama‐Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  43. Hahn MW, Stadler P, Wu QL, Pöckl M. The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 2004; 57:379–390 [View Article] [PubMed]
    [Google Scholar]
  44. Li Y, Yan S, Yang Q, Qi Z, Zhang X-H et al. Algoriphagus faecimaris sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2011; 61:2856–2860 [View Article] [PubMed]
    [Google Scholar]
  45. Park S, Park JM, Yoon JH. Algoriphagus marisflavi sp. nov., isolated from water of an estuary environment. Int J Syst Evol Microbiol 2017; 67:4168–4174 [View Article]
    [Google Scholar]
  46. Yoon JH, Kang SJ, Jung SY, Lee CH, Oh TK. Algoriphagus yeomjeoni sp. nov., isolated from a marine solar saltern in the Yellow Sea, Korea. Int J Syst Evol Microbiol 2005; 55:865–870 [View Article]
    [Google Scholar]
  47. Seo H-S, Kwon KK, Yang S-H, Lee H-S, Bae SS et al. Marinoscillum gen. nov., a member of the family “Flexibacteraceae”, with Marinoscillum pacificum sp. nov. from a marine sponge and Marinoscillum furvescens nom. rev., comb. nov. Int J Syst Evol Microbiol 2009; 59:1204–1208 [View Article] [PubMed]
    [Google Scholar]
  48. Zhang L, Shen X, Liu Y, Li S. Nafulsella turpanensis gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from soil. Int J Syst Evol Microbiol 2013; 63:1639–1645 [View Article] [PubMed]
    [Google Scholar]
  49. Sharma S, Kumar Singh P, Suresh K, Anil Kumar P. Nupur Fulvivirga imtechensis sp. nov., a member of the phylum Bacteroidetes. Int J Syst Evol Microbiol 2012; 62:2213–2217 [View Article] [PubMed]
    [Google Scholar]
  50. Jung YT, Ha MJ, Park S, Lee JS, Yoon JH. Fulvivirga lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2016; 66:2604–2609 [View Article]
    [Google Scholar]
  51. Nedashkovskaya OI, Kim SB, Shin DS, Beleneva IA, Mikhailov VV. Fulvivirga kasyanovii gen. nov., sp. nov., a novel member of the phylum Bacteroidetes isolated from seawater in a mussel farm. Int J Syst Evol Microbiol 2007; 57:1046–1049 [View Article] [PubMed]
    [Google Scholar]
  52. Weon H-Y, Kwon S-W, Son J-A, Kim S-J, Kim Y-S et al. Adhaeribacter aerophilus sp. nov., Adhaeribacter aerolatus sp. nov. and Segetibacter aerophilus sp. nov., isolated from air samples. Int J Syst Evol Microbiol 2010; 60:2424–2429 [View Article] [PubMed]
    [Google Scholar]
  53. Chhetri G, Kim J, Kim I, Lee B, Jang W et al. Adhaeribacter rhizoryzae sp. nov., a fibrillar matrix-producing bacterium isolated from the rhizosphere of rice plant. Int J Syst Evol Microbiol 2020; 70:5382–5388 [View Article] [PubMed]
    [Google Scholar]
  54. Ali S, Xie J, Chen Y, Cai R, Juventus AJ et al. Penaeicola halotolerans gen. nov., sp. nov., a novel bacterium of the family Cyclobacteriaceae isolated from a shrimp pond. Int J Syst Evol Microbiol 2021; 71:005047 [View Article] [PubMed]
    [Google Scholar]
  55. Nedashkovskaya OI, Kim SB, Lysenko AM, Park MS, Mikhailov VV et al. Roseivirga echinicomitans sp. nov., a novel marine bacterium isolated from the sea urchin Strongylocentrotus intermedius, and emended description of the genus Roseivirga. Int J Syst Evol Microbiol 2005; 55:1797–1800 [View Article] [PubMed]
    [Google Scholar]
  56. Huo Y-Y, Xu L, Wang C-S, Yang J-Y, You H et al. Fabibacter pacificus sp. nov., a moderately halophilic bacterium isolated from seawater. Int J Syst Evol Microbiol 2013; 63:3710–3714 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006175
Loading
/content/journal/ijsem/10.1099/ijsem.0.006175
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error