1887

Abstract

A milky-white-coloured, aerobic, Gram-stain-positive, rod-shaped and motile bacterial strain (GW78) was isolated from forest soil. GW78 was catalase-positive and oxidase-negative. The strain was able to grow optimally at 37 °C and at pH 7.0 in Reasoner's 2A media. The phylogenetic and 16S rRNA gene sequence analysis of GW78 showed its affiliation with the genus . The 16S rRNA gene sequence of GW78 revealed 98.3 % similarity to its nearest neighbour VKPM B-7519. Its chemotaxonomic properties included MK-7 as the sole menaquinone, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylmonomethylethanolamine and phosphatidylethanolamine as major polar lipids, and anteiso-C, C 11 and anteiso-C as predominant fatty acids. Digital DNA–DNA hybridization and average nucleotide identity results with its closest relatives were <74.0 % and <14.0 %, respectively. Overall, 16S rRNA gene sequence comparisons, phylogenetic and genomic evidence, and phenotypic and chemotaxonomic data allow the differentiation of GW78 from other members of the genus . Thus, we propose that strain GW78 represents a novel species of the genus , with the name sp. nov. The type strain is GW78 (=KCTC 43430=NBRC 116023).

Funding
This study was supported by the:
  • National Institute of Biological Resources (Award NIBR202203112)
    • Principle Award Recipient: Dong-UkKim
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006171
2023-11-20
2024-05-08
Loading full text...

Full text loading...

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993; 64:253–260 [View Article] [PubMed]
    [Google Scholar]
  2. Tindall BJ. What is the type species of the genus Paenibacillus? Request for an opinion. Int J Syst Evol Microbiol 2000; 50 Pt 2:939–940 [View Article] [PubMed]
    [Google Scholar]
  3. Yoon J-H, Seo W-T, Shin YK, Kho YH, Kang KH et al. Paenibacillus chinjuensis sp. nov., a novel exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 2002; 52:415–421 [View Article]
    [Google Scholar]
  4. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  5. Baik KS, Lim CH, Choe HN, Kim EM, Seong CN. Paenibacillus rigui sp. nov., isolated from a freshwater wetland. Int J Syst Evol Microbiol 2011; 61:529–534 [View Article] [PubMed]
    [Google Scholar]
  6. Glaeser SP, Falsen E, Busse H-J, Kämpfer P. Paenibacillus vulneris sp. nov., isolated from a necrotic wound. Int J Syst Evol Microbiol 2013; 63:777–782 [View Article]
    [Google Scholar]
  7. Kämpfer P, Lipski A, Lamothe L, Clermont D, Criscuolo A et al. Paenibacillus allorhizoplanae sp. nov. from the rhizoplane of a Zea mays root. Arch Microbiol 2022; 204:630 [View Article] [PubMed]
    [Google Scholar]
  8. Menéndez E, Ramírez-Bahena M-H, Carro L, Fernández-Pascual M, Peter Klenk H et al. Paenibacillus periandrae sp. nov., isolated from nodules of Periandra mediterranea. Int J Syst Evol Microbiol 2016; 66:1838–1843 [View Article] [PubMed]
    [Google Scholar]
  9. Wang J, Deng M, Zhou E-M, Ran L, Miao C-P et al. Paenibacillus hamazuiensis sp. nov., a bacterium isolated from Hamazui hot spring in Yunnan province, south-west China. Arch Microbiol 2022; 204:1–5 [View Article] [PubMed]
    [Google Scholar]
  10. Baek J, Weerawongwiwat V, Kim J-H, Yoon J-H, Lee J-S et al. Paenibacillus arenosi sp. nov., a siderophore-producing bacterium isolated from coastal sediment. Arch Microbiol 2022; 204:113 [View Article] [PubMed]
    [Google Scholar]
  11. Huang Z-H, Yang H-L, Chen F, Li F-N, Meng L-J et al. Paenibacillus mangrovi sp. nov., a novel endophytic bacterium isolated from bark of Kandelia candel. Int J Syst Evol Microbiol 2023; 73: [View Article]
    [Google Scholar]
  12. Thin KK, He S-W, Ma R, Wang X, Han J-G et al. Paenibacillus rhizolycopersici sp. nov., an oligotrophic bacterium isolated from a tomato plant in China. Int J Syst Evol Microbiol 2023; 73: [View Article] [PubMed]
    [Google Scholar]
  13. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article] [PubMed]
    [Google Scholar]
  14. Dahal RH, Kim J, Kim D-U, Dong K, Hong Y et al. Cellulomonas fulva sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  15. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  16. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: [View Article]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  22. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  23. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article] [PubMed]
    [Google Scholar]
  24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  25. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol 2000; 7:203–214 [View Article] [PubMed]
    [Google Scholar]
  26. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  27. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  28. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  29. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  30. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  32. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  33. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  34. Grady EN, MacDonald J, Liu L, Richman A, Yuan Z-C. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 2016; 15:1–18 [View Article]
    [Google Scholar]
  35. Miller CG, Schmidt EE. Sulfur metabolism under stress. Antioxid Redox Signal 2020; 33:1158–1173 [View Article] [PubMed]
    [Google Scholar]
  36. Kriechbaumer V, Glawischnig E. Auxin biosynthesis within the network of tryptophan metabolism. J Nano Bio Tech 2005; 2:53–58
    [Google Scholar]
  37. Chakraborty K, Kizhakkekalam VK, Joy M, Chakraborty RD. Bacillibactin class of siderophore antibiotics from a marine symbiotic Bacillus as promising antibacterial agents. Appl Microbiol Biotechnol 2022; 106:329–340 [View Article] [PubMed]
    [Google Scholar]
  38. Kajimura Y, Kaneda M. Fusaricidins B, C and D, new depsipeptide antibuotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological activity. J Antibiot 1997; 50:220–228 [View Article]
    [Google Scholar]
  39. Laffont C, Brutesco C, Hajjar C, Cullia G, Fanelli R et al. Simple rules govern the diversity of bacterial nicotianamine-like metallophores. Biochem J 2019; 476:2221–2233 [View Article] [PubMed]
    [Google Scholar]
  40. Li J-H, Cho W, Hamchand R, Oh J, Crawford JM. A conserved nonribosomal peptide synthetase in Xenorhabdus bovienii produces citrulline-functionalized lipopeptides. J Nat Prod 2021; 84:2692–2699 [View Article]
    [Google Scholar]
  41. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  42. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  43. Breznak JA, Costilow RN. Physicochemical factors in growth. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. eds Methods for General and Molecular Microbiology Washington, DC: American Society of Microbiology; 2007 pp 309–329 [View Article]
    [Google Scholar]
  44. Smibert RM, Kreg NR. Phenotypic characterization. In Gerhard P, Murray RG, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society of Microbiology; 1994 pp 607–654
    [Google Scholar]
  45. Sasser M. Bacterial Identification by Gas Chromatographic Analysis of Fatty Acid Methyl Esters (GC-FAME) MIDI; 1990
    [Google Scholar]
  46. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  47. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article] [PubMed]
    [Google Scholar]
  48. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  49. Komagata K, Suzuki KI. 4 lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006171
Loading
/content/journal/ijsem/10.1099/ijsem.0.006171
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error