1887

Abstract

Two methylotrophic methanogens, designated strains FTZ2 and FTZ6, were isolated from mangrove sediment sampled in Futian Mangrove Nature Reserve in Shenzhen, PR China. Cells of strains FTZ2 and FTZ6 were cocci, with diameters of 0.6–1.0 µm and 0.6–0.9 µm, respectively. Both strains grew on methanol, methylamine, dimethylamine and trimethylamine, but not on acetate, formate, H/CO, choline, betaine or dimethyl sulphide. Strain FTZ2 grew at 10–37 °C (optimally at 33 °C), pH 5.5–8.0 (optimally at pH 7.0) and 0–1.03 M NaCl (optimally at 0.17 M NaCl). In contrast, strain FTZ6 grew at 15–42 °C (optimally at 37 °C), pH 5.0–7.5 (optimally pH 6.5) and 0–1.03 M NaCl (optimally at 0.17 M NaCl). Both strains required magnesium for growth and were susceptible to sodium dodecyl sulphate. Biotin was required for the growth of strain FTZ2 but not of strain FTZ6. The genomic G+C contents of strains FTZ2 and FTZ6 were 41.6 and 40.9 mol%, respectively. Phylogenetic analyses revealed that strain FTZ2 was mostly related to YSF-03, with 16S rRNA gene similarity of 98.6 %, an average nucleotide identity (ANI) of 82.5 %, and a digital DNA–DNA hybridization (dDDH) of 24.6 %. While strain FTZ6 was mostly related to PL-12/M, with 16S rRNA gene similarity of 99.4 %, an ANI of 88.6% and a dDDH of 34.6 %. Based on phenotypic, phylogenetic and genotypic evidence, two novel species of the genus , sp. nov. and sp. nov., are proposed. The type strain of sp. nov. is FTZ2 (=CCAM 1276=JCM 39396) and the type strain of sp. nov. is FTZ6 (=CCAM 1277=JCM 39397).

Funding
This study was supported by the:
  • Shenzhen University 2035 Program for Excellent Research (Award 2022B002)
    • Principle Award Recipient: MengLI
  • Shenzhen Science and Technology Program (Award KCXFZ20201221173404012)
    • Principle Award Recipient: NotApplicable
  • Shenzhen Science and Technology Program (Award JCYJ20200109105010363)
    • Principle Award Recipient: MengLI
  • Innovation Team Project of Universities in Guangdong Province (Award 2020KCXTD023)
    • Principle Award Recipient: MengLI
  • China Postdoctoral Science Foundation (Award 2021TQ0212)
    • Principle Award Recipient: JinjieZhou
  • National Natural Science Foundation of China (Award 42007217)
    • Principle Award Recipient: Cui-JingZhang
  • National Natural Science Foundation of China (Award 32070108)
    • Principle Award Recipient: NotApplicable
  • National Natural Science Foundation of China (Award 32225003, 31970105, 92251306)
    • Principle Award Recipient: MengLI
  • National Natural Science Foundation of China (Award 42207144)
    • Principle Award Recipient: JinjieZhou
  • National Science and Technology Fundamental Resources Investigation Program of China (Award 2019FY100700)
    • Principle Award Recipient: MengLI
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006169
2023-11-20
2024-07-21
Loading full text...

Full text loading...

References

  1. Duarte CM, Middelburg JJ, Caraco N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2005; 2:1–8 [View Article]
    [Google Scholar]
  2. Lyimo TJ, Pol A, Jetten MSM, den Camp HJMO. Diversity of methanogenic archaea in a mangrove sediment and isolation of a new methanococcoides strain. FEMS Microbiol Lett 2009; 291:247–253 [View Article] [PubMed]
    [Google Scholar]
  3. Lyimo TJ, Pol A, Op den Camp HJ, Harhangi HR, Vogels GD. Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. Int J Syst Evol Microbiol 2000; 50 Pt 1:171–178 [View Article] [PubMed]
    [Google Scholar]
  4. Zhang CJ, Pan J, Liu Y, Duan CH, Li M. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Microbiome 2020; 8:94 [View Article] [PubMed]
    [Google Scholar]
  5. Oremland RS, Polcin S. Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl Environ Microbiol 1982; 44:1270–1276 [View Article] [PubMed]
    [Google Scholar]
  6. Lai M-C. Methanolobus. In Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P. eds Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons; 2019 pp 1–8
    [Google Scholar]
  7. Wagner D. Methanosarcina. In Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P. eds Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons; 2020 pp 1–23
    [Google Scholar]
  8. Ticak T, Hariraju D, Arcelay MB, Arivett BA, Fiester SE et al. Isolation and characterization of a tetramethylammonium-degrading Methanococcoides strain and a novel glycine betaine-utilizing methanolobus strain. Arch Microbiol 2015; 197:197–209 [View Article] [PubMed]
    [Google Scholar]
  9. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  10. Zhang G, Jiang N, Liu X, Dong X. Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, “Methanolobus psychrophilus” sp. nov., prevalent in Zoige wetland of the Tibetan plateau. Appl Environ Microbiol 2008; 74:6114–6120 [View Article] [PubMed]
    [Google Scholar]
  11. Doerfert SN, Reichlen M, Iyer P, Wang M, Ferry JG. Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam. Int J Syst Evol Microbiol 2009; 59:1064–1069 [View Article] [PubMed]
    [Google Scholar]
  12. Liu Y, Boone DR, Choy C. Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, Saline aquifer. Int J Syst Bacteriol 1990; 40:111–116 [View Article]
    [Google Scholar]
  13. DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992; 89:5685–5689 [View Article] [PubMed]
    [Google Scholar]
  14. Lane D. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Sons; 1991 pp 115–175
    [Google Scholar]
  15. Zhou J, Zhang CJ, Li M. Desulfovibrio mangrovi sp. nov., a sulfate-reducing bacterium isolated from mangrove sediments: a member of the proposed genus “Psychrodesulfovibrio.”. Antonie van Leeuwenhoek 2023; 116:499–510 [View Article] [PubMed]
    [Google Scholar]
  16. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  17. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  18. Bueno de Mesquita CP, Wu D, Tringe SG. Methyl-based methanogenesis: an ecological and genomic review. Microbiol Mol Biol Rev 2023; 87:e0002422 [View Article] [PubMed]
    [Google Scholar]
  19. Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH et al. An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol 2019; 17:219–232 [View Article] [PubMed]
    [Google Scholar]
  20. Garcia PS, Gribaldo S, Borrel G. Diversity and evolution of methane-related pathways in Archaea. Annu Rev Microbiol 2022; 76:727–755 [View Article] [PubMed]
    [Google Scholar]
  21. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  24. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  25. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  26. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  27. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  28. Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007; 23:127–128 [View Article] [PubMed]
    [Google Scholar]
  29. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  30. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016 [View Article]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  34. Rinke C, Chuvochina M, Mussig AJ, Chaumeil P-A, Davín AA et al. A standardized archaeal taxonomy for the genome taxonomy database. Nat Microbiol 2021; 6:946–959 [View Article] [PubMed]
    [Google Scholar]
  35. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019; 36:1925–1927 [View Article] [PubMed]
    [Google Scholar]
  36. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  38. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  39. Zhou J, Smith JA, Li M, Holmes DE. Methane production by Methanothrix thermoacetophila via direct interspecies electron transfer with Geobacter metallireducens. mBio 2023; 14:e0036023 [View Article] [PubMed]
    [Google Scholar]
  40. Prakash O, Dodsworth JA, Dong X, Ferry JG, L’Haridon S et al. Proposed minimal standards for description of methanogenic archaea. Int J Syst Evol Microbiol 2023; 73: [View Article] [PubMed]
    [Google Scholar]
  41. Keltjens JT, Vogels GD. Conversion of methanol and methylamines to methane and carbon dioxide. In Ferry JG. eds Methanogenesis: Ecology, Physiology, Biochemistry & Genetics Boston, MA: Springer US; 1993 pp 253–303 [View Article]
    [Google Scholar]
  42. Chen S-C, Huang H-H, Lai M-C, Weng C-Y, Chiu H-H et al. Methanolobus psychrotolerans sp. nov., a psychrotolerant methanoarchaeon isolated from a saline meromictic lake in Siberia. Int J Syst Evol Microbiol 2018; 68:1378–1383 [View Article] [PubMed]
    [Google Scholar]
  43. Kadam PC, Boone DR. Physiological characterization and emended description of Methanolobus vulcani. Int J Syst Bacteriol 1995; 45:400–402 [View Article]
    [Google Scholar]
  44. Mochimaru H, Tamaki H, Hanada S, Imachi H, Nakamura K et al. Methanolobus profundi sp. nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field. Int J Syst Evol Microbiol 2009; 59:714–718 [View Article] [PubMed]
    [Google Scholar]
  45. König H, Stetter KO. Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zbl Bakt Hyg, I Abt Orig C 1982; 3:478–490 [View Article]
    [Google Scholar]
  46. Kadam PC, Ranade DR, Mandelco L, Boone DR. Isolation and characterization of Methanolobus bombayensis sp. nov., a methylotrophic methanogen that requires high concentrations of divalent cations. Int J Syst Bacteriol 1994; 44:603–607 [View Article]
    [Google Scholar]
  47. Anonymous Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Int J Syst Evol Microbiol 2002; 52:685–690 [View Article] [PubMed]
    [Google Scholar]
  48. Oremland RS, Boone DR. Methanolobus taylorii sp. nov., a new methylotrophic, estuarine methanogen. Int J Syst Bacteriol 1994; 44:573–575 [View Article]
    [Google Scholar]
  49. Wu SY, Lai MC. Methanogenic archaea isolated from Taiwan’s Chelungpu fault. Appl Environ Microbiol 2011; 77:830–838 [View Article] [PubMed]
    [Google Scholar]
  50. Shen Y, Chen S-C, Lai M-C, Huang H-H, Chiu H-H et al. Methanolobus halotolerans sp. nov., isolated from the saline Lake Tus in Siberia. Int J Syst Evol Microbiol 2020; 70:5586–5593 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006169
Loading
/content/journal/ijsem/10.1099/ijsem.0.006169
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error