1887

Abstract

Four yellow-coloured strains (zg-Y815/zg-Y108 and zg-Y859/zg-Y826) were isolated from the intestinal contents of and assigned to the ' group'. The four strains grew optimally on brain heart infusion agar with 5 % defibrinated sheep blood plate at 30 °C, pH 7.0 and with 0.5 % NaCl (w/v). Comparative analysis of their 16S rRNA genes indicated that the two strain pairs belong to the genus , showing the highest similarity to 785 (99.52 %), which was further confirmed by the 16S rRNA gene and genome-based phylogenetic analysis. The comparative genomic analysis [digital DNA–DNA hybridization, (dDDH) and average nucleotide identity (ANI)] proved that the four strains are two different species (zg-Y815/zg-Y108, 71.7 %/96.8 %; zg-Y859/zg-Y826, 87.3 %/98.5 %) and differ from other known species within the genus (zg-Y815, 19.6–32.3 %/77.2–88.0 %; zg-Y859, 19.5–29.3 %/77.4–86.3 %). Strain pairs zg-Y815/zg-Y108 and zg-Y859/zg-Y826 had the same major cellular fatty acids (iso-C and anteiso-C), with MK-8(H) as their dominant respiratory quinone (70.6 and 61.7 %, respectively). The leading polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylinositol. The detected amino acids and cell-wall sugars of the two new species were identical (amino acids: alanine, glutamic acid, and lysine; sugars: rhamnose, galactose, mannose, glucose, and ribose). According to the phylogenetic, phenotypic, and chemotaxonomic analyses, we concluded that the four new strains represented two different novel species in the genus , for which the names sp. nov. (zg-Y815= GDMCC 1.3494 = JCM 35821) and sp. nov. (zg-Y859 = GDMCC 1.3493 = JCM 35822) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006168
2023-11-29
2024-05-08
Loading full text...

Full text loading...

References

  1. Zhang G, Yang J, Lai X-H, Lu S, Jin D et al. Neisseria chenwenguii sp. nov. isolated from the rectal contents of a plateau pika (Ochotona curzoniae). Antonie van Leeuwenhoek 2019; 112:1001–1010 [View Article] [PubMed]
    [Google Scholar]
  2. Meng X, Lu S, Yang J, Jin D, Wang X et al. Metataxonomics reveal vultures as a reservoir for Clostridium perfringens. Emerg Microbes Infect 2017; 6:e9 [View Article] [PubMed]
    [Google Scholar]
  3. Bai X, Lu S, Yang J, Jin D, Pu J et al. Precise fecal microbiome of the herbivorous Tibetan antelope inhabiting high-altitude alpine plateau. Front Microbiol 2018; 9:2321 [View Article] [PubMed]
    [Google Scholar]
  4. Pu J, Yang J, Lu S, Jin D, Luo X et al. Species-level taxonomic characterization of uncultured core gut microbiota of plateau pika. Microbiol Spectr 2023; 11:e0349522 [View Article] [PubMed]
    [Google Scholar]
  5. Liu S, Jin D, Lan R, Wang Y, Meng Q et al. Escherichia marmotae sp. nov., isolated from faeces of Marmota himalayana. Int J Syst Evol Microbiol 2015; 65:2130–2134 [View Article] [PubMed]
    [Google Scholar]
  6. Liu S, Feng J, Pu J, Xu X, Lu S et al. Genomic and molecular characterisation of Escherichia marmotae from wild rodents in Qinghai-Tibet plateau as a potential pathogen. Sci Rep 2019; 9:10619 [View Article] [PubMed]
    [Google Scholar]
  7. Sivertsen A, Dyrhovden R, Tellevik MG, Bruvold TS, Nybakken E et al. Escherichia marmotae—a human pathogen easily misidentified as Escherichia coli. Microbiol Spectr 2022; 10:e0203521 [View Article] [PubMed]
    [Google Scholar]
  8. Hu S, Jin D, Lu S, Liu S, Zhang J et al. Helicobacter himalayensis sp. nov. isolated from gastric mucosa of Marmota himalayana. Int J Syst Evol Microbiol 2015; 65:1719–1725 [View Article] [PubMed]
    [Google Scholar]
  9. Hu S, Niu L, Wu L, Zhu X, Cai Y et al. Genomic analysis of Helicobacter himalayensis sp. nov. isolated from Marmota himalayana. BMC Genomics 2020; 21:826 [View Article] [PubMed]
    [Google Scholar]
  10. Ge Y, Tao Y, Yang J, Lai X-H, Jin D et al. Arthrobacter yangruifuii sp. nov. and Arthrobacter zhaoguopingii sp. nov., two new members of the genus Arthrobacter. Int J Syst Evol Microbiol 2020; 70:5287–5295 [View Article] [PubMed]
    [Google Scholar]
  11. Zhang G, Yang J, Jin D, Lai XH, Lu S. Arthrobacter sunyaminii sp. nov. and Arthrobacter jiangjiafuii sp. nov., new members in the genus Arthrobacter. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  12. Liu Y, Zhang G, Yang J, Cheng Y, Ye L et al. Arthrobacter caoxuetaonis sp. nov., Arthrobacter zhangbolii sp. nov. and Arthrobacter gengyunqii sp. nov., isolated from Marmota himalayana faeces from Qinghai-Tibet plateau. Int J Syst Evol Microbiol 2023; 73:
    [Google Scholar]
  13. Conn HJ, Dimmick I. Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J Bacteriol 1947; 54:291–303 [View Article] [PubMed]
    [Google Scholar]
  14. Ye J-J, Liu S-W, Lu Q-P, Cheema MT, Abbas M et al. Arthrobacter mobilis sp. nov., a novel actinobacterium isolated from Cholistan desert soil. Int J Syst Evol Microbiol 2020; 70:5445–5452 [View Article] [PubMed]
    [Google Scholar]
  15. Lin P, Yan ZF, Li CT. Arthrobacter sedimenti sp. nov., isolated from river sediment in Yuantouzhu park, China. Arch Microbiol 2020; 202:2551–2556 [View Article] [PubMed]
    [Google Scholar]
  16. Funke G, Hutson RA, Bernard KA, Pfyffer GE, Wauters G et al. Isolation of Arthrobacter spp. from clinical specimens and description of Arthrobacter cumminsii sp. nov. and Arthrobacter woluwensis sp. nov. J Clin Microbiol 1996; 34:2356–2363 [View Article] [PubMed]
    [Google Scholar]
  17. Wauters G, Charlier J, Janssens M, Delmée M. Identification of Arthrobacter oxydans, Arthrobacter luteolus sp. nov., and Arthrobacter albus sp. nov., isolated from human clinical specimens. J Clin Microbiol 2000; 38:2412–2415 [View Article] [PubMed]
    [Google Scholar]
  18. Huq MA, Akter S. Characterization and genome analysis of Arthrobacter bangladeshi sp. nov., applied for the green synthesis of silver nanoparticles and their antibacterial efficacy against drug-resistant human pathogens. Pharmaceutics 2021; 13:1691 [View Article] [PubMed]
    [Google Scholar]
  19. Krishnan R, Menon RR, Tanaka N, Busse H-J, Krishnamurthi S et al. Arthrobacter pokkalii sp nov, a novel plant associated Actinobacterium with plant beneficial properties, isolated from saline tolerant pokkali rice, Kerala, India. PLoS ONE 2016; 11:e0150322 [View Article] [PubMed]
    [Google Scholar]
  20. Storms V, Devriese LA, Coopman R, Schumann P, Vyncke F. Arthrobacter gandavensis sp. nov., for strains of veterinary origin. Int J Syst Evol Microbiol 2003; 53:1881–1884 [View Article] [PubMed]
    [Google Scholar]
  21. Liu Q, Liu HC, Zhou YG, Xin YH. Genetic diversity of glacier-inhabiting Cryobacterium bacteria in China and description of Cryobacterium zongtaii sp. nov. and Arthrobacter glacialis sp. nov. Syst Appl Microbiol 2019; 42:168–177 [View Article] [PubMed]
    [Google Scholar]
  22. Lee JS, Lee KC, Pyun YR, Bae KS. Arthrobacter koreensis sp. nov., a novel alkalitolerant bacterium from soil. Int J Syst Evol Microbiol 2003; 53:1277–1280 [View Article] [PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K et al. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  24. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  27. Zhang G, Lai X-H, Yang J, Jin D, Pu J et al. Luteimonas chenhongjianii, a novel species isolated from rectal contents of Tibetan Plateau pika (Ochotona curzoniae). Int J Syst Evol Microbiol 2020; 70:3186–3193 [View Article] [PubMed]
    [Google Scholar]
  28. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  29. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  30. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28:3150–3152 [View Article] [PubMed]
    [Google Scholar]
  31. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article] [PubMed]
    [Google Scholar]
  32. Busse HJ. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int J Syst Evol Microbiol 2016; 66:9
    [Google Scholar]
  33. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  34. Purev E, Kondo T, Takemoto D, Niones JT, Ojika M. Identification of ε-poly-L-lysine as an antimicrobial product from an epichloë endophyte and isolation of fungal ε-PL synthetase gene. Molecules 2020; 25:1032 [View Article] [PubMed]
    [Google Scholar]
  35. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res 2016; 44:D694–D697 [View Article] [PubMed]
    [Google Scholar]
  36. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–D462 [View Article] [PubMed]
    [Google Scholar]
  37. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  38. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article] [PubMed]
    [Google Scholar]
  39. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 1990 pp 1–7
    [Google Scholar]
  40. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Evol Microbiol 1977; 27:104–117 [View Article]
    [Google Scholar]
  41. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in Actinomycetes and Corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  42. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006168
Loading
/content/journal/ijsem/10.1099/ijsem.0.006168
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error