1887

Abstract

An extremely halophilic archaeon, strain S1AR25-5A, was isolated from a hypersaline soil sampled in Odiel Saltmarshes Natural Area (Huelva, Spain). The cells were Gram-stain-negative, motile, pleomorphic rods. Cell growth was observed in the presence of 15–30 % (w/v) NaCl [optimum, 25 % (w/v) NaCl], at pH 6.0–9.0 (optimum, pH 6.5–7.5) and at 25–50 °C (optimum, 37 °C). Based on the 16S rRNA and ′ gene sequence comparisons, strain S1AR25-5A was affiliated to the genus . Taxogenomic analysis, including comparison of the genomes and the phylogenomic tree based on the core-orthologous proteins, together with the genomic indices, i.e., orthologous average nucleotide identity, digital DNA–DNA hybridization and average amino acid identity, confirmed that strain S1AR25-5A (=CCM 9249=CECT 30619) represents a new species of the genus , for which we propose the name sp. nov. The major polar lipids were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulphate and an unidentified glycolipid, which correlated with the lipid profile of species of the genus . In addition, based on the modern approach in description of species in taxonomy of prokaryotes, the above mentioned genomic indexes indicated that the species should be considered as a heterotypic synonym of .

Funding
This study was supported by the:
  • Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía (Award P20_01066 and BIO-213)
    • Principle Award Recipient: AntonioVentosa
  • Ministerio de Ciencia, Innovación y Universidades (Award PID2020-118136GB-I00 funded by MCIN/AEI/10.13039/501100011033)
    • Principle Award Recipient: AntonioVentosa
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006157
2023-11-22
2024-05-08
Loading full text...

Full text loading...

References

  1. Torreblanca M, Rodriguez-Valera F, Juez G, Ventosa A, Kamekura M et al. Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 1986; 8:89–99 [View Article]
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  3. Ma X, Hu Y, Li X-X, Tan S, Cheng M et al. Halomicroarcula laminariae sp. nov. and Halomicroarcula marina sp. nov., extremely halophilic archaea isolated from salted brown alga Laminaria and coastal saline-alkali lands. Int J Syst Evol Microbiol 2023; 73:005889 [View Article] [PubMed]
    [Google Scholar]
  4. Yang Y, Cui H-L, Zhou P-J, Liu S-J. Haloarcula amylolytica sp. nov., an extremely halophilic archaeon isolated from Aibi salt lake in Xin-Jiang, China. Int J Syst Evol Microbiol 2007; 57:103–106 [View Article] [PubMed]
    [Google Scholar]
  5. Ihara K, Watanabe S, Tamura T. Haloarcula argentinensis sp. nov. and Haloarcula mukohataei sp. nov., two new extremely halophilic archaea collected in Argentina. Int J Syst Bacteriol 1997; 47:73–77 [View Article]
    [Google Scholar]
  6. Juez G, Rodriguez-Valera F, Ventosa A, Kushner DJ. Haloarcula hispanica spec. nov. and Haloferax gibbonsii spec, nov., two new species of extremely halophilic archaebacteria. Syst Appl Microbiol 1986; 8:75–79 [View Article]
    [Google Scholar]
  7. Takashina T, Hamamoto T, Otozai K, Grant WD, Horikoshi K. Haloarcula japonica sp. nov., a new triangular halophilic archaebacterium. Syst Appl Microbiol 1990; 13:177–181 [View Article]
    [Google Scholar]
  8. Enomoto S, Shimane Y, Ihara K, Kamekura M, Itoh T et al. Haloarcula mannanilytica sp. nov., a galactomannan-degrading haloarchaeon isolated from commercial salt. Int J Syst Evol Microbiol 2020; 70:6331–6337 [View Article] [PubMed]
    [Google Scholar]
  9. Oren A, Ginzburg M, Ginzburg BZ, Hochstein LI, Volcani BE. Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea. Int J Syst Bacteriol 1990; 40:209–210 [View Article]
    [Google Scholar]
  10. Oren A, Ventosa A, Gutiérrez MC, Kamekura M. Haloarcula quadrata sp. nov., a square, motile archaeon isolated from a brine pool in Sinai (Egypt). Int J Syst Bacteriol 1999; 49:1149–1155 [View Article] [PubMed]
    [Google Scholar]
  11. Namwong S, Tanasupawat S, Kudo T, Itoh T. Haloarcula salaria sp. nov. and Haloarcula tradensis sp. nov., isolated from salt in Thai fish sauce. Int J Syst Evol Microbiol 2011; 61:231–236 [View Article]
    [Google Scholar]
  12. Barreteau H, Vandervennet M, Guédon L, Point V, Canaan S et al. Haloarcula sebkhae sp. nov., an extremely halophilic archaeon from Algerian hypersaline environment. Int J Syst Evol Microbiol 2019; 69:732–738 [View Article] [PubMed]
    [Google Scholar]
  13. Mylvaganam S, Dennis PP. Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. Genetics 1992; 130:399–410 [View Article] [PubMed]
    [Google Scholar]
  14. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007; 10:504–509 [View Article] [PubMed]
    [Google Scholar]
  15. Borriss R, Rueckert C, Blom J, Bezuidt O, Reva O et al. Whole genome sequence comparisons in taxonomy. In Rainey F, Oren A, Rainey F, Oren A. eds Methods in Microbiology. Taxonomy of Prokaryotes vol 38 London: Academic Press; 2011 pp 409–436 [View Article]
    [Google Scholar]
  16. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article] [PubMed]
    [Google Scholar]
  17. Ramírez-Durán N, de la Haba RR, Vera-Gargallo B, Sánchez-Porro C, Alonso-Carmona S et al. Taxogenomic and comparative genomic analysis of the genus Saccharomonospora focused on the identification of biosynthetic clusters PKS and NRPS. Front Microbiol 2021; 12:603791 [View Article] [PubMed]
    [Google Scholar]
  18. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  19. DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992; 89:5685–5689 [View Article] [PubMed]
    [Google Scholar]
  20. Arahal DR, Dewhirst FE, Paster BJ, Volcani BE, Ventosa A. Phylogenetic analyses of some extremely halophilic archaea isolated from Dead Sea water, determined on the basis of their 16S rRNA sequences. Appl Environ Microbiol 1996; 62:3779–3786 [View Article] [PubMed]
    [Google Scholar]
  21. Fullmer MS, Soucy SM, Swithers KS, Makkay AM, Wheeler R et al. Population and genomic analysis of the genus Halorubrum. Front Microbiol 2014; 5:140 [View Article] [PubMed]
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment Search Tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  24. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article] [PubMed]
    [Google Scholar]
  25. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  26. Hall T. Bioedit: an important software for molecular biology. GERF Bull Biosci 2011; 2:60–61
    [Google Scholar]
  27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  29. Felsenstein J. Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst 1983; 14:313–333 [View Article]
    [Google Scholar]
  30. Galisteo C. Gitana: phyloGenetic imaging tool for adjusting nodes and other arrangements; 2022 https://github.com/cristinagalisteo/gitana accessed 3 June 2022
  31. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  32. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics 2020; 70:e102 [View Article] [PubMed]
    [Google Scholar]
  33. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  34. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  35. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ 2016; 4:e1900v1 [View Article]
    [Google Scholar]
  36. de la Haba RR, López-Hermoso C, Sánchez-Porro C, Konstantinidis KT, Ventosa A. Comparative genomics and phylogenomic analysis of the genus Salinivibrio. Front Microbiol 2019; 10:2104 [View Article] [PubMed]
    [Google Scholar]
  37. Edgar RC. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat Commun 2022; 13:6968 [View Article] [PubMed]
    [Google Scholar]
  38. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  39. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  40. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2020; 50:801–807 [View Article] [PubMed]
    [Google Scholar]
  41. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [View Article] [PubMed]
    [Google Scholar]
  42. Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 2000; 16:276–277 [View Article] [PubMed]
    [Google Scholar]
  43. Oren A, Ventosa A, Grant WD. Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 1997; 47:233–238 [View Article]
    [Google Scholar]
  44. Dussault HP. An improved technique for staining red halophilic bacteria. J Bacteriol 1955; 70:484–485 [View Article]
    [Google Scholar]
  45. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria. 3rd edn London, UK: Cambridge University Press; 1965
    [Google Scholar]
  46. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article] [PubMed]
    [Google Scholar]
  47. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002; 25:360–375 [View Article] [PubMed]
    [Google Scholar]
  48. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria Cambridge, UK: Cambridge University Press; 2003
    [Google Scholar]
  49. Gutiérrez C, González C. Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 1972; 24:516–517 [View Article] [PubMed]
    [Google Scholar]
  50. Gerhardt P, Murray RG, Wood WA, Krieg N. Methods for General and Molecular Bacteriology Washington, DC, USA: American Society for Microbiology; 1994
    [Google Scholar]
  51. Clarke PH. Hydrogen sulphide production by bacteria. J Gen Microbiol 1953; 8:397–407 [View Article] [PubMed]
    [Google Scholar]
  52. Christensen WB. Urea decomposition as a means of differentiating proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 1946; 52:461–466 [View Article] [PubMed]
    [Google Scholar]
  53. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods. Microbiology 1982; 128:1959–1968 [View Article]
    [Google Scholar]
  54. Angelini R, Corral P, Lopalco P, Ventosa A, Corcelli A. Novel ether lipid cardiolipins in archaeal membranes of extreme haloalkaliphiles. Biochim Biophys Acta 2012; 1818:1365–1373 [View Article] [PubMed]
    [Google Scholar]
  55. Corral P, Gutiérrez MC, Castillo AM, Domínguez M, Lopalco P et al. Natronococcus roseus sp. nov., a haloalkaliphilic archaeon from a hypersaline lake. Int J Syst Evol Microbiol 2013; 63:104–108 [View Article] [PubMed]
    [Google Scholar]
  56. Consejería de Medio Ambiente de la Junta de Andalucía Los Criterios y Estándares para Declarar un Suelo Contaminado en Andalucía y la Metodología y Técnicas de Toma de Muestra y Análisis para su Investigación Sevilla: Junta de Andalucía; 1999
    [Google Scholar]
  57. Krzmarzick MJ, Taylor DK, Fu X, McCutchan AL. Diversity and niche of archaea in bioremediation. Archaea 2018; 2018:1–17 [View Article] [PubMed]
    [Google Scholar]
  58. Vera-Bernal M, Martínez-Espinosa RM. Insights on cadmium removal by bioremediation: the case of haloarchaea. Microbiol Res 2021; 12:354–375 [View Article]
    [Google Scholar]
  59. Tavoosi N, Akhavan Sepahi A, Amoozegar MA, Kiarostami V. Toxic heavy metal/oxyanion tolerance in haloarchaea from some saline and hypersaline ecosystems. J Basic Microbiol 2023; 63:558–569 [View Article] [PubMed]
    [Google Scholar]
  60. Sun D-L, Jiang X, Wu QL, Zhou N-Y. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl Environ Microbiol 2013; 79:5962–5969 [View Article] [PubMed]
    [Google Scholar]
  61. Ibal JC, Pham HQ, Park CE, Shin J-H, Badger JH. Information about variations in multiple copies of bacterial 16S rRNA genes may aid in species identification. PLoS ONE 2019; 14:e0212090 [View Article] [PubMed]
    [Google Scholar]
  62. de la Haba RR, Corral P, Sánchez-Porro C, Infante-Domínguez C, Makkay AM et al. Genotypic and lipid analyses of strains from the archaeal genus Halorubrum reveal insights into their taxonomy, divergence, and population structure. Front Microbiol 2018; 9:512 [View Article] [PubMed]
    [Google Scholar]
  63. Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R et al. Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B’ (rpoB’) gene. Int J Syst Evol Microbiol 2010; 60:2398–2408 [View Article] [PubMed]
    [Google Scholar]
  64. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  65. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  66. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  67. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  68. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  69. de la Haba RR, Minegishi H, Kamekura M, Shimane Y, Ventosa A. Phylogenomics of haloarchaea: the controversy of the genera Natrinema-Haloterrigena. Front Microbiol 2021; 12:740909 [View Article] [PubMed]
    [Google Scholar]
  70. Becker EA, Seitzer PM, Tritt A, Larsen D, Krusor M et al. Phylogenetically driven sequencing of extremely halophilic archaea reveals strategies for static and dynamic osmo-response. PLoS Genet 2014; 1:e1004784 [View Article] [PubMed]
    [Google Scholar]
  71. Oren A, Arahal DR, Göker M, Moore ER, Rossello-Mora R. International Code of Nomenclature of Prokaryotes. Prokaryotic code (2022 revision). Int J Syst Evol Microbiol 2023; 73:005585 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006157
Loading
/content/journal/ijsem/10.1099/ijsem.0.006157
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error