1887

Abstract

Four Gram-positive, rod-shaped, none-sporeforming, non-motile isolates were obtained from various raw milk samples taken from the cooling tank on a research farm in Königswinter, Germany. Based on phylogenetic analysis of the 16S rRNA genes and whole genome sequences, all isolates were assigned to the genus , but were divided in two different groups. All isolates contained C 9 and C as predominant fatty acids, as well as traces of C. They all contained menaquinones MK-8 (H) and MK-9 (H) and produced mycolic acids characteristic for the majority of species belonging to the genus . 16S rRNA gene sequence similarity values to the closest related type strains DSM 45392 and DSM 20521 were below 98.7 %, average nucleotide identity values were below 86 % and digital DNA–DNA-hybridization values were below 25 %, indicating that the isolates represent two novel species. The names sp. nov. and sp. nov. are proposed, represented by the type strains LM112 (=DSM 116216=HAMBI 3782) and R4 (=DSM 116183=HAMBI 3785), respectively.

Keyword(s): Corynebacterium , dairy farm and raw milk
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006141
2023-10-27
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/10/ijsem006141.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006141&mimeType=html&fmt=ahah

References

  1. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  2. Hahne J, Kloster T, Rathmann S, Weber M, Lipski A. Isolation and characterization of Corynebacterium spp. from bulk tank raw cow’s milk of different dairy farms in Germany. PLoS One 2018; 13:e0194365 [View Article] [PubMed]
    [Google Scholar]
  3. Wiertz R, Schulz SC, Müller U, Kämpfer P, Lipski A. Corynebacterium frankenforstense sp. nov. and Corynebacterium lactis sp. nov., isolated from raw cow milk. Int J Syst Evol Microbiol 2013; 63:4495–4501 [View Article] [PubMed]
    [Google Scholar]
  4. Zimmermann J, Rückert C, Kalinowski J, Lipski A. Corynebacterium crudilactis sp. nov., isolated from raw cow’s milk. Int J Syst Evol Microbiol 2016; 66:5288–5293 [View Article] [PubMed]
    [Google Scholar]
  5. Kittl S, Studer E, Brodard I, Thomann A, Jores J. Corynebacterium uberis sp. nov. frequently isolated from bovine mastitis. Syst Appl Microbiol 2022; 45:126325 [View Article] [PubMed]
    [Google Scholar]
  6. Fernandez-Garayzabal JF, Collins MD, Hutson RA, Fernandez E, Monasterio R et al. Corynebacterium mastitidis sp. nov., isolated from milk of sheep with subclinical mastitis. Int J Syst Bacteriol 1997; 47:1082–1085 [View Article] [PubMed]
    [Google Scholar]
  7. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA. eds Manual of Methods for General Bacteriology Washington: American Society for Microbiology; 1981
    [Google Scholar]
  8. Weber M, Schünemann W, Fuß J, Kämpfer P, Lipski A. Stenotrophomonas lactitubi sp. nov. and Stenotrophomonas indicatrix sp. nov., isolated from surfaces with food contact. Int J Syst Evol Microbiol 2018; 68:1830–1838 [View Article] [PubMed]
    [Google Scholar]
  9. Sasser M. Identification of bacteria through fatty acid analysis. In Klement Z, Rudolph K, Sands DC. eds Methods in Phytobacteriology Budapest: Akademiai Kaido; 1990 pp 199–204
    [Google Scholar]
  10. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  11. Heidler von Heilborn D, Reinmüller J, Hölzl G, Meier-Kolthoff JP, Woehle C et al. Sphingomonas aliaeris sp. nov., a new species isolated from pork steak packed under modified atmosphere. Int J Syst Evol Microbiol 2021; 71:004973 [View Article] [PubMed]
    [Google Scholar]
  12. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  13. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  14. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  15. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  16. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  17. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  19. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2015; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  20. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016e1900v1 [View Article]
    [Google Scholar]
  21. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article] [PubMed]
    [Google Scholar]
  22. Wu C-Y, Zhuang L, Zhou S-G, Li F-B, He J. Corynebacterium humireducens sp. nov., an alkaliphilic, humic acid-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 2011; 61:882–887 [View Article] [PubMed]
    [Google Scholar]
  23. Yanagawa R, Honda E. Corynebacterium pilosum and Corynebacterium cystitidis, two new species from cows. Int J Syst Evol Microbiol 1978; 28:209–216 [View Article]
    [Google Scholar]
  24. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment Search Tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Klenk H-P, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article] [PubMed]
    [Google Scholar]
  26. Collins MD, Hoyles L, Hutson RA, Foster G, Falsen E. Corynebacterium testudinoris sp. nov., from a tortoise, and Corynebacterium felinum sp. nov., from a Scottish wild cat. Int J Syst Evol Microbiol 2001; 51:1349–1352 [View Article] [PubMed]
    [Google Scholar]
  27. Merhej V, Falsen E, Raoult D, Roux V. Corynebacterium timonense sp. nov. and Corynebacterium massiliense sp. nov., isolated from human blood and human articular hip fluid. Int J Syst Evol Microbiol 2009; 59:1953–1959 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006141
Loading
/content/journal/ijsem/10.1099/ijsem.0.006141
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error