1887

Abstract

During an ongoing female urinary microbiome research study, strains c17Ua_112 and c31Ua_26 isolated from urine samples of a patient diagnosed with overactive bladder and a healthy postmenopausal woman, respectively, could not be allocated to any species with valid names. In this work, we aimed to characterize these strains. The 16S rRNA gene sequences confirmed that these strains are members of the genus . Phylogenetic analysis based on strongly supported two clades, one encompassing c17Ua_112 and nine other strains from the public database, and the other including c31Ua_26 and three other strains, which were distinct from currently recognized species of the genus . Likewise, the phylogenomic tree also showed that strains c17Ua_112 and c31Ua_26 formed independent and robust clusters. Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between c17Ua_112 and c31Ua_26 were 79.27 and 27.4 %, respectively. Strain c17Ua_112 showed the highest ANI (94.8 %) and dDDH values (59.8 %) with UGent 18.01, and strain c31Ua_26 revealed highest ANI (84.2 %) and dDDH (29.1 %) values with GS 9838-1. Based on the data presented here, the two strains c17Ua_112 and c31Ua_26 represent two novel species of the genus , for which the names (c17Ua_112=DSM 113414=CCP 71) and (c31Ua_26=DSM 113415=CCP 72) are proposed.

Funding
This study was supported by the:
  • Fundação para a Ciência e a Tecnologia (Award NORTH-01-0145-FEDER-000024)
    • Principle Award Recipient: SvetlanaUgarcina Perovic
  • Applied Molecular Biosciences Unit (Award UIDP/QUI/04378/2020)
    • Principle Award Recipient: TeresaGonçalves Ribeiro
  • Fundação para a Ciência e a Tecnologia (Award DL57/2016/CP1346/CT0034)
    • Principle Award Recipient: FilipaGrosso
  • Fundação para a Ciência e a Tecnologia (Award SFRH/BD/132497/2017)
    • Principle Award Recipient: MagdalenaKsiezarek
  • Fundação para a Ciência e a Tecnologia (Award SFRH/BD/05038/2020)
    • Principle Award Recipient: MárciaSousa
  • Fundação para a Ciência e a Tecnologia (Award LA/P/0140/2020)
    • Principle Award Recipient: NotApplicable
  • Fundação para a Ciência e a Tecnologia (Award UIDB/04378/2020)
    • Principle Award Recipient: NotApplicable
  • Fundação para a Ciência e a Tecnologia (Award UIDP/04378/2020)
    • Principle Award Recipient: NotApplicable
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006140
2023-11-03
2024-05-08
Loading full text...

Full text loading...

References

  1. Stackebrandt E, Rainey FA, Ward-rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479–491 [View Article]
    [Google Scholar]
  2. Vaneechoutte M, Guschin A, Van Simaey L, Gansemans Y, Van Nieuwerburgh F et al. Emended description of Gardnerella vaginalis and description of Gardnerella leopoldii sp. nov., Gardnerella piotii sp. nov. and Gardnerella swidsinskii sp. nov., with delineation of 13 genomic species within the genus Gardnerella. Int J Syst Evol Microbiol 2019; 69:679–687 [View Article] [PubMed]
    [Google Scholar]
  3. Swidsinski A, Mendling W, Loening-Baucke V, Ladhoff A, Swidsinski S et al. Adherent biofilms in bacterial vaginosis. Obstet Gynecol 2005; 106:1013–1023 [View Article] [PubMed]
    [Google Scholar]
  4. Castro J, Jefferson KK, Cerca N. Genetic heterogeneity and taxonomic diversity among Gardnerella species. Trends Microbiol 2020; 28:202–211 [View Article] [PubMed]
    [Google Scholar]
  5. Hay PE, Morgan DJ, Ison CA, Bhide SA, Romney M et al. A longitudinal study of bacterial vaginosis during pregnancy. BJOG 1994; 101:1048–1053 [View Article]
    [Google Scholar]
  6. Menard JP, Mazouni C, Salem-Cherif I, Fenollar F, Raoult D et al. High vaginal concentrations of Atopobium vaginae and Gardnerella vaginalis in women undergoing preterm labor. Obstet Gynecol 2010; 115:134–140 [View Article] [PubMed]
    [Google Scholar]
  7. Kovachev SM. Cervical cancer and vaginal microbiota changes. Arch Microbiol 2020; 202:323–327 [View Article] [PubMed]
    [Google Scholar]
  8. Putonti C, Thomas-White K, Crum E, Hilt EE, Price TK et al. Genome investigation of urinary Gardnerella strains and their relationship to isolates of the vaginal microbiota. mSphere 2021; 6:e00154-21 [View Article] [PubMed]
    [Google Scholar]
  9. Legrand JC, Alewaeters A, Leenaerts L, Gilbert P, Labbe M et al. Gardnerella vaginalis bacteremia from pulmonary abscess in a male alcohol abuser. J Clin Microbiol 1989; 27:1132–1134 [View Article] [PubMed]
    [Google Scholar]
  10. Lagacé-Wiens PRS, Ng B, Reimer A, Burdz T, Wiebe D et al. Gardnerella vaginalis bacteremia in a previously healthy man: case report and characterization of the isolate. J Clin Microbiol 2008; 46:804–806 [View Article] [PubMed]
    [Google Scholar]
  11. Calvert LD, Collins M, Bateman JRM. Multiple abscesses caused by Gardnerella vaginalis in an immunocompetent man. J Infect 2005; 51:E27–9 [View Article] [PubMed]
    [Google Scholar]
  12. Murray L, Halpin J, Casserly B, O’Connell NH, Scanlon T. A pyo-hydropneumothorax with sepsis, secondary to Gardnerella vaginalis infection in a post-partum female. Respir Med Case Rep 2019; 26:189–192 [View Article] [PubMed]
    [Google Scholar]
  13. Graham S, Howes C, Dunsmuir R, Sandoe J. Vertebral osteomyelitis and discitis due to Gardnerella vaginalis. J Med Microbiol 2009; 58:1382–1384 [View Article] [PubMed]
    [Google Scholar]
  14. Salmon SA, Walker RD, Carleton CL, Robinson BE. Isolation of Gardnerella vaginalis from the reproductive tract of four mares. J Vet Diagn Invest 1990; 2:167–170 [View Article] [PubMed]
    [Google Scholar]
  15. Salmon SA, Walker RD, Carleton CL, Shah S, Robinson BE. Characterization of Gardnerella vaginalis and G. vaginalis-like organisms from the reproductive tract of the mare. J Clin Microbiol 1991; 29:1157–1161 [View Article] [PubMed]
    [Google Scholar]
  16. Ksiezarek M, Ugarcina-Perovic S, Rocha J, Grosso F, Peixe L. Long-term stability of the urogenital microbiota of asymptomatic European women. BMC Microbiol 2021; 21:64 [View Article] [PubMed]
    [Google Scholar]
  17. Ugarcina Perovic S, Ksiezarek M, Rocha J, Cappelli EA, Sousa M et al. Urinary microbiome of reproductive-age asymptomatic European women. Microbiol Spectr 2022; 10:e0130822 [View Article] [PubMed]
    [Google Scholar]
  18. Perovic SU, Ksiezarek M, Rocha J, Vale L, Silva C et al. Time to change microbiological approach to overactive bladder. Eur Urol Suppl 2019; 18:e103 [View Article]
    [Google Scholar]
  19. Briselden AM, Moncla BJ, Stevens CE, Hillier SL. Sialidases (neuraminidases) in bacterial vaginosis and bacterial vaginosis-associated microflora. J Clin Microbiol 1992; 30:663–666 [View Article]
    [Google Scholar]
  20. Martin Strohalm mMass - Open Source Mass Spectrometry Tool. n.d http://www.mmass.org/
  21. Babraham Institute Bioinformatics - Trim Galore!. n.d https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
  22. Bioinformatics Resource Centers (BRCs) Bacterial and Viral Bioinformatics Resource Center | BV-BRC. n.d https://www.bv-brc.org/
  23. Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res 2023; 51:D678–D689 [View Article] [PubMed]
    [Google Scholar]
  24. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  25. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  26. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article] [PubMed]
    [Google Scholar]
  27. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  30. Gelber SE, Aguilar JL, Lewis KLT, Ratner AJ. Functional and phylogenetic characterization of vaginolysin, the human-specific cytolysin from Gardnerella vaginalis. J Bacteriol 2008; 190:3896–3903 [View Article] [PubMed]
    [Google Scholar]
  31. Robinson LS, Schwebke J, Lewis WG, Lewis AL. Identification and characterization of NanH2 and NanH3, enzymes responsible for sialidase activity in the vaginal bacterium Gardnerella vaginalis. J Biol Chem 2019; 294:5230–5245 [View Article] [PubMed]
    [Google Scholar]
  32. Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 2018; 46:W246–W251 [View Article] [PubMed]
    [Google Scholar]
  33. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res 2011; 39:W347–52 [View Article] [PubMed]
    [Google Scholar]
  34. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [View Article]
    [Google Scholar]
  35. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75:3491–3500 [View Article] [PubMed]
    [Google Scholar]
  36. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article] [PubMed]
    [Google Scholar]
  37. van Heel AJ, de Jong A, Song C, Viel JH, Kok J et al. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 2018; 46:W278–W281 [View Article] [PubMed]
    [Google Scholar]
  38. Kumar S, Stecher G, Tamura K, Dudley J. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  39. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  40. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  41. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  42. Garcia EM, Serrano MG, Edupuganti L, Edwards DJ, Buck GA et al. Sequence comparison of vaginolysin from different Gardnerella species. Pathogens 2021; 10:86 [View Article] [PubMed]
    [Google Scholar]
  43. Greenwood JR, Pickett MJ. Transfer of Haemophilus vaginalis Gardner and Dukes to a new genus, Gardnerella: G. vaginalis (Gardner and Dukes) comb. nov. Int J Syst Bacteriol 1980; 30:170–178 [View Article]
    [Google Scholar]
  44. Catlin BW. Gardnerella vaginalis: characteristics, clinical considerations, and controversies. Clin Microbiol Rev 1992; 5:213–237 [View Article] [PubMed]
    [Google Scholar]
  45. Turovskiy Y, Sutyak Noll K, Chikindas ML. The aetiology of bacterial vaginosis. J Appl Microbiol 2011; 110:1105–1128 [View Article] [PubMed]
    [Google Scholar]
  46. Sadhu K, Domingue PA, Chow AW, Nelligan J, Cheng N et al. Gardnerella vaginalis has a Gram-positive cell-wall ultrastructure and lacks classical cell-wall lipopolysaccharide. J Med Microbiol 1989; 29:229–235 [View Article] [PubMed]
    [Google Scholar]
  47. Reyn A, Birch-Andersen A, Lapage SP. An electron microscope study of thin sections of Haemophilus vaginalis (Gardner and Dukes) and some possibly related species. Can J Microbiol 1966; 12:1125–1136 [View Article] [PubMed]
    [Google Scholar]
  48. Harper JJ, Davis GHG. Cell wall analysis of Gardnerella vaginalis (Haemophilus vaginalis). Int J Syst Bacteriol 1982; 32:48–50 [View Article]
    [Google Scholar]
  49. Flaiz M, Baur T, Brahner S, Poehlein A, Daniel R et al. Caproicibacter fermentans gen. nov., sp. nov., a new caproate-producing bacterium and emended description of the genus Caproiciproducens. Int J Syst Evol Microbiol 2020; 70:4269–4279 [View Article] [PubMed]
    [Google Scholar]
  50. Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K et al. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 2018; 68:2386–2392 [View Article] [PubMed]
    [Google Scholar]
  51. Kurukulasuriya SP, Patterson MH, Hill JE. Slipped-strand mispairing in the gene encoding sialidase NanH3 in Gardnerella spp. Infect Immun 2021; 89:e00583-20 [View Article] [PubMed]
    [Google Scholar]
  52. Muzny CA, Sobel JD. The role of antimicrobial resistance in refractory and recurrent bacterial vaginosis and current recommendations for treatment. Antibiotics 2022; 11:500 [View Article] [PubMed]
    [Google Scholar]
  53. Murphy CS, McKay G. Clindamycin. In StatPearls Treasure Island (FL): StatPearls Publishing; 2022 pp 1–4 [View Article]
    [Google Scholar]
  54. Iannelli F, Santoro F, Santagati M, Docquier J-D, Lazzeri E et al. Type M resistance to macrolides is due to a two-gene efflux transport system of the ATP-binding cassette (ABC) superfamily. Front Microbiol 2018; 9:1670 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006140
Loading
/content/journal/ijsem/10.1099/ijsem.0.006140
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error