1887

Abstract

Strain TÜ4103 was originally sampled from Java, Indonesia and deposited in the Tübingen strain collection under the name ‘ sp.’. The strain was found to be an antibiotic producer as strain TÜ4103 showed bioactivity against Gram-positive bacteria, such as and in bioassays. Strain TÜ4103 showed 16S rRNA gene sequence similarity of 99.65 % to DSM 101999 and 98.82 % to DSM 44781 and DSM 44780. Genome-based phylogenetic analysis revealed that strain TÜ4103 is closely related to DSM 44780 and DSM 44781. The digital DNA–DNA hybridization values between the genome sequences of strain TÜ4103 and its closest phylogenomic relatives, strains DSM 44780 and DSM 44781, were 43.0 and 42.9 %, respectively. Average nucleotide identity (ANI) values support this claim, with the highest ANI score of 91.14 % between TÜ4103 and being closely followed by an ANI value of 91.10 % between and TÜ4103. The genome of TÜ4103 has a size of 7.91 Mb with a G+C content of 74.05 mol%. Whole-cell hydrolysates of strain TÜ4103 are rich in -diaminopimelic acid, and rhamnose, galactose and mannose are characteristic as whole-cell sugars. The phospholipid profile contains phosphatidylethanolamine, diphosphatidylglycerol and glycophospholipid. The predominant menaquinones (>93.5 %) are MK-9(H) and MK-9(H). Based on the phenotypic, genotypic and genomic characteristics, strain TÜ4103 (=DSM 114396=CECT 30712) merits recognition as the type strain of a novel species of the genus , for which the name sp. nov. is proposed.

Funding
This study was supported by the:
  • Deutsches Zentrum für Infektionsforschung (Award TTU 09.826)
    • Principle Award Recipient: YvonneMast
  • Leibniz-Gemeinschaft (Award K445/2022)
    • Principle Award Recipient: YvonneMast
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006137
2023-11-02
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/11/ijsem006137.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006137&mimeType=html&fmt=ahah

References

  1. Omura S, Takahashi Y, Iwai Y, Tanaka H. Kitasatosporia, a new genus of the order Actinomycetales. J Antibiot 1982; 35:1013–1019 [View Article] [PubMed]
    [Google Scholar]
  2. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:2007 [View Article] [PubMed]
    [Google Scholar]
  3. Göker M. Filling the gaps: missing taxon names at the ranks of class, order and family. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  4. Li Y, Wang M, Sun Z-Z, Xie B-B. Comparative genomic insights Into the taxonomic classification, diversity, and secondary metabolic potentials of Kitasatospora, a genus closely related to Streptomyces. Front Microbiol 2021; 12:683814 [View Article] [PubMed]
    [Google Scholar]
  5. Girard G, Traag BA, Sangal V, Mascini N, Hoskisson PA et al. A novel taxonomic marker that discriminates between morphologically complex actinomycetes. Open Biol 2013; 3:130073 [View Article] [PubMed]
    [Google Scholar]
  6. Girard G, Willemse J, Zhu H, Claessen D, Bukarasam K et al. Analysis of novel kitasatosporae reveals significant evolutionary changes in conserved developmental genes between Kitasatospora and Streptomyces. Antonie van Leeuwenhoek 2014; 106:365–380 [View Article] [PubMed]
    [Google Scholar]
  7. Groth I, Rodríguez C, Schütze B, Schmitz P, Leistner E et al. Five novel Kitasatospora species from soil: Kitasatospora arboriphila sp. nov., K. gansuensis sp. nov., K. nipponensis sp. nov., K. paranensis sp. nov. and K. terrestris sp. nov. Int J Syst Evol Microbiol 2004; 54:2121–2129 [View Article] [PubMed]
    [Google Scholar]
  8. Takahashi Y. Genus Kitasatospora, taxonomic features and diversity of secondary metabolites. J Antibiot 2017; 70:506–513 [View Article] [PubMed]
    [Google Scholar]
  9. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic Actinomycetes: phospholipid composition. Biochem Syst Ecol 1977; 5:249–260 [View Article]
    [Google Scholar]
  10. Wei B, Du A-Q, Zhou Z-Y, Lai C, Yu W-C et al. An atlas of bacterial secondary metabolite biosynthesis gene clusters. Environ Microbiol 2021; 23:6981–6992 [View Article] [PubMed]
    [Google Scholar]
  11. Omura S, Otoguro K, Nishikiori T, Oiwa R, Iwai Y. Setamycin, a new antibiotic. J Antibiot 1981; 34:1253–1256 [View Article] [PubMed]
    [Google Scholar]
  12. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature 2000; 403:853–858 [View Article] [PubMed]
    [Google Scholar]
  13. Krause J. Isolierung Neuer Antibiotika-Produzenten Aus Indonesischen Bodenproben Und Aktivierung Stiller Antibiotika-Gencluster Dissertation; Universität Tübingen; 2021 [View Article]
    [Google Scholar]
  14. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical Streptomyces Genetics John Innes Foundation Norwich; 2000
    [Google Scholar]
  15. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article] [PubMed]
    [Google Scholar]
  16. Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics 2012; 13:238 [View Article] [PubMed]
    [Google Scholar]
  17. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  20. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  21. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  22. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS et al. The ensembl variant effect predictor. Genome Biol 2016; 17:122 [View Article] [PubMed]
    [Google Scholar]
  23. Goloboff PA, Farris JS, Nixon KC. TNT, a free program for phylogenetic analysis. Cladistics 2008; 24:774–786 [View Article]
    [Google Scholar]
  24. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary?. J Comput Biol 2010; 17:337–354 [View Article] [PubMed]
    [Google Scholar]
  25. Swofford DL. PAUP: phylogenetic analysis using parsimony (and other methods), version 4.0 beta. In Httppaup Csit Fsu Edu
    [Google Scholar]
  26. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  27. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  28. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article] [PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  30. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  31. Li B, Furihata K, Kudo T, Yokota A. Kitasatospora saccharophila sp. nov. and Kitasatospora kazusanensis sp. nov., isolated from soil and transfer of Streptomyces atroaurantiacus to the genus Kitasatospora as Kitasatospora atroaurantiaca comb. nov. J Gen Appl Microbiol 2009; 55:19–26 [View Article] [PubMed]
    [Google Scholar]
  32. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  33. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  34. Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M et al. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 2008; 190:4050–4060 [View Article] [PubMed]
    [Google Scholar]
  35. Jiang J, He X, Cane DE. Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme. Nat Chem Biol 2007; 3:711–715 [View Article] [PubMed]
    [Google Scholar]
  36. Purev E, Kondo T, Takemoto D, Niones JT, Ojika M. Identification of ε-poly-L-lysine as an antimicrobial product from an Epichloë endophyte and isolation of fungal ε-PL synthetase gene. Molecules 2020; 25:1032 [View Article] [PubMed]
    [Google Scholar]
  37. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  38. Handayani I, Saad H, Ratnakomala S, Lisdiyanti P, Kusharyoto W et al. Mining Indonesian microbial biodiversity for novel natural compounds by a combined genome mining and molecular networking approach. Mar Drugs 2021; 19:316 [View Article] [PubMed]
    [Google Scholar]
  39. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  40. Vieira S, Huber KJ, Neumann-Schaal M, Geppert A, Luckner M et al. Usitatibacter rugosus gen. nov., sp. nov. and Usitatibacter palustris sp. nov., novel members of Usitatibacteraceae fam. nov. within the order Nitrosomonadales isolated from soil. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  41. Schumann P. 5 - peptidoglycan structure. In Rainey F, Oren A. eds Methods in Microbiology vol 38 London: Academic Press; 2011 pp 101–129 [PubMed]
    [Google Scholar]
  42. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note 101 Newark, Del: MIDI, Inc; 1990 pp 1–7
    [Google Scholar]
  43. Jaén-Luchoro D, Al-Shaer S, Piñeiro-Iglesias B, Gonzales-Siles L, Cardew S et al. Corynebacterium genitalium sp. nov., nom. rev. and Corynebacterium pseudogenitalium sp. nov., nom. rev., two old species of the genus Corynebacterium described from clinical and environmental samples. Res Microbiol 2023; 174:103987 [View Article] [PubMed]
    [Google Scholar]
  44. Tajima K, Takahashi Y, Seino A, Iwai Y, Omura S. Description of two novel species of the genus Kitasatospora Omura et al. 1982, Kitasatospora cineracea sp. nov. and Kitasatospora niigatensis sp. nov. Int J Syst Evol Microbiol 2001; 51:1765–1771 [View Article] [PubMed]
    [Google Scholar]
  45. Lefort V, Desper R, Gascuel OF. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  46. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006137
Loading
/content/journal/ijsem/10.1099/ijsem.0.006137
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error