1887

Abstract

16S rRNA sequence types associated with the candidate family env.OPS 17 have been reported from various environments, but no representatives have been characterized and validly named. Bacteria of env.OPS 17 are affiliated with the order and were first detected more than two decades ago in the vicinity of a thermal spring in Yellowstone National Park. Strain Swamp196, isolated from the soil surrounding a swamp in Northern Germany, is the first characterized representative of candidate family env.OPS 17. Cells of strain Swamp196 are rod-shaped, non-motile, non-spore-forming, non-capsulated and stain Gram-negative. Colonies are small and orange-coloured. The strain is mesophilic and grows under aerobic or microaerophilic conditions. It grows chemo-organotrophically over a narrow range of pH and exclusively on proteinaceous substrates. The major cellular fatty acids are iso-C, iso-C 10, C 9 and C 7 and the major polar lipids are two unidentified aminophospholipids, one unidentified aminolipid and one unidentified lipid. The predominant respiratory quinone is MK-7. The DNA G+C content of genomic DNA is 35.5 mol%. Strain Swamp196 is related to AR-3-17, Hh36 and Dae 13 with 16S rRNA gene sequence similarity of 84.1, 83.8 and 83.5 %, respectively. Based on our phenotypic, genomic and phylogenetic analysis, we propose the novel species sp. nov (type strain Swamp196=DSM 105849=CECT 30420) of the novel genus gen. nov. and the novel family fam. nov.

Funding
This study was supported by the:
  • Deutsche Forschungsgemeinschaft (Award OV 20/21-1)
    • Principle Award Recipient: JörgOvermann
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006134
2023-10-27
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/10/ijsem006134.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006134&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose nonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 1983; 33:580–598 [View Article]
    [Google Scholar]
  2. Graber JR, Kirshtein J, Speck M, Reysenbach AL. Community structure along a thermal gradient in a stream near Obsidian Pool, Yellowstone National Park. In Thermophiles Biodiversity, Ecology, and Evolution Boston, MA: Springer US; 2012 pp 81–91 [View Article]
    [Google Scholar]
  3. Wu X, Spencer S, Gushgari-Doyle S, Yee MO, Voriskova J et al. Culturing of “unculturable” subsurface microbes: natural organic carbon source fuels the growth of diverse and distinct bacteria from groundwater. Front Microbiol 2020; 11:610001 [View Article] [PubMed]
    [Google Scholar]
  4. Klawonn I, Van den Wyngaert S, Parada AE, Arandia-Gorostidi N, Whitehouse MJ et al. Characterizing the “fungal shunt”: parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs. Proc Natl Acad Sci USA 2021; 118:e2102225118 [View Article] [PubMed]
    [Google Scholar]
  5. Adkins J, Docherty KM, Gutknecht JLM, Miesel JR. How do soil microbial communities respond to fire in the intermediate term? Investigating direct and indirect effects associated with fire occurrence and burn severity. Sci Total Environ 2020; 745:140957 [View Article] [PubMed]
    [Google Scholar]
  6. Barbieri E, Potenza L, Rossi I, Sisti D, Giomaro G et al. Phylogenetic characterization and in situ detection of a Cytophaga-Flexibacter-Bacteroides phylogroup bacterium in Tuber borchii vittad. Ectomycorrhizal mycelium. Appl Environ Microbiol 2000; 66:5035–5042 [View Article] [PubMed]
    [Google Scholar]
  7. Kim S, Islam MR, Kang I, Cho J-C. Cultivation of dominant freshwater bacterioplankton lineages using a high-throughput dilution-to-extinction culturing approach over a 1-year period. Front Microbiol 2021; 12:700637 [View Article] [PubMed]
    [Google Scholar]
  8. Vieira S, Luckner M, Wanner G, Overmann J. Luteitalea pratensis gen. nov., sp. nov. a new member of subdivision 6 Acidobacteria isolated from temperate grassland soil. Int J Syst Evol Microbiol 2017; 67:1408–1414 [View Article]
    [Google Scholar]
  9. Foesel BU, Rohde M, Overmann J. Blastocatella fastidiosa gen. nov., sp. nov., isolated from semiarid savanna soil - the first described species of Acidobacteria subdivision 4. Syst Appl Microbiol 2013; 36:82–89 [View Article] [PubMed]
    [Google Scholar]
  10. Turner S, Pryer KM, Miao VP, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 1999; 46:327–338 [View Article] [PubMed]
    [Google Scholar]
  11. Lane D. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics 1991 pp 115–175
    [Google Scholar]
  12. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  13. Dahal RH, Chaudhary DK, Kim D-U, Kim J. Nine novel psychrotolerant species of the genus Pedobacter isolated from Arctic soil with potential antioxidant activities. Int J Syst Evol Microbiol 2020; 70:2537–2553 [View Article] [PubMed]
    [Google Scholar]
  14. Liu Q, Kim S-G, Liu H-C, Xin Y-H, Zhou Y-G. Arcticibacter pallidicorallinus sp. nov. isolated from glacier ice. Int J Syst Evol Microbiol 2014; 64:2229–2232 [View Article] [PubMed]
    [Google Scholar]
  15. An D-S, Kim S-G, Ten LN, Cho C-H. Pedobacter daechungensis sp. nov., from freshwater lake sediment in South Korea. Int J Syst Evol Microbiol 2009; 59:69–72 [View Article] [PubMed]
    [Google Scholar]
  16. Davis KER, Joseph SJ, Janssen PH. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 2005; 71:826–834 [View Article] [PubMed]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  18. Siddiqi MZ, Liu Q, Kang M-S, Kim MS, Im W-T. Anseongella ginsenosidimutans gen. nov., sp. nov., isolated from soil cultivating ginseng. Int J Syst Evol Microbiol 2016; 66:1125x–11130x [View Article] [PubMed]
    [Google Scholar]
  19. Tomczyk-Żak K, Kaczanowski S, Drewniak Ł, Dmoch Ł, Sklodowska A et al. Bacteria diversity and arsenic mobilization in rock biofilm from an ancient gold and arsenic mine. Sci Total Environ 2013; 461:330–340 [View Article] [PubMed]
    [Google Scholar]
  20. Li H, Durbin R. Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics 2010; 26:589–595 [View Article] [PubMed]
    [Google Scholar]
  21. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  22. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  23. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  24. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  26. Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of archaea and bacteria at the whole genome level. Nucleic Acids Res 2018; 46:W282–W288 [View Article] [PubMed]
    [Google Scholar]
  27. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  28. Weon H-Y, Kim B-Y, Lee C-M, Hong S-B, Jeon Y-A et al. Solitalea koreensis gen. nov., sp. nov. and the reclassification of [Flexibacter] canadensis as Solitalea canadensis comb. nov. Int J Syst Evol Microbiol 2009; 59:1969–1975 [View Article] [PubMed]
    [Google Scholar]
  29. Urios L, Intertaglia L, Magot M. Pedobacter tournemirensis sp. nov., isolated from a fault water sample of a deep Toarcian argillite layer. Int J Syst Evol Microbiol 2013; 63:303–308 [View Article] [PubMed]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  31. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM. Bergey’s Manual of Determinative Bacteriology Wilkins and Wilkins; 1923
    [Google Scholar]
  32. Kwon S-W, Son J-A, Kim S-J, Kim Y-S, Park I-C et al. Pedobacter rhizosphaerae sp. nov. and Pedobacter soli sp. nov., isolated from rhizosphere soil of Chinese cabbage (Brassica campestris). Int J Syst Evol Microbiol 2011; 61:2874–2879 [View Article] [PubMed]
    [Google Scholar]
  33. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007; 10:504–509 [View Article] [PubMed]
    [Google Scholar]
  34. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article] [PubMed]
    [Google Scholar]
  35. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article] [PubMed]
    [Google Scholar]
  36. Zhang L, Wüst A, Prasser B, Müller C, Einsle O. Functional assembly of nitrous oxide reductase provides insights into copper site maturation. Proc Natl Acad Sci USA 2019; 116:12822–12827 [View Article] [PubMed]
    [Google Scholar]
  37. Tang YP, Dallas MM, Malamy MH. Characterization of the Batl (Bacteroides aerotolerance) operon in Bacteroides fragilis: isolation of a B. fragilis mutant with reduced aerotolerance and impaired growth in in vivo model systems. Mol Microbiol 1999; 32:139–149 [View Article] [PubMed]
    [Google Scholar]
  38. Nagar S, Talwar C, Haider S, Puri A, Ponnusamy K et al. Phylogenetic relationships and potential functional attributes of the genus Parapedobacter: a member of family Sphingobacteriaceae. Front Microbiol 2020; 11:1725 [View Article] [PubMed]
    [Google Scholar]
  39. Vieira S, Pascual J, Boedeker C, Geppert A, Riedel T et al. Terricaulis silvestris gen. nov., sp. nov., a novel prosthecate, budding member of the family Caulobacteraceae isolated from forest soil. Int J Syst Evol Microbiol 2020; 70:4966–4977 [View Article] [PubMed]
    [Google Scholar]
  40. Gerhardt P. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  41. Bast E. Mikrobiologische Methoden, 3rd edn. Berlin, Heidelberg: Springer Spektrum; 2014 [View Article]
    [Google Scholar]
  42. Barrow GI, Feltham RKA, Steel KJ, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge University Press; 1993 [View Article]
    [Google Scholar]
  43. Vieira S, Huber KJ, Neumann-Schaal M, Geppert A, Luckner M et al. Usitatibacter rugosus gen. nov., sp. nov. and Usitatibacter palustris sp. nov., novel members of Usitatibacteraceae fam. nov. within the order Nitrosomonadales isolated from soil. Int J Syst Evol Microbiol 2021; 71:004631
    [Google Scholar]
  44. Prasad S, Manasa BP, Buddhi S, Pratibha MS, Begum Z et al. Arcticibacter svalbardensis gen. nov., sp. nov., of the family Sphingobacteriaceae in the phylum Bacteroidetes, isolated from Arctic soil. Int J Syst Evol Microbiol 2013; 63:1627–1632 [View Article] [PubMed]
    [Google Scholar]
  45. Zhang D-C, Schinner F, Margesin R. Pedobacter bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2010; 60:2592–2595 [View Article] [PubMed]
    [Google Scholar]
  46. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979; 43:260–296 [View Article] [PubMed]
    [Google Scholar]
  47. Tschech A, Pfennig N. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 1984; 137:163–167 [View Article]
    [Google Scholar]
  48. Pascual J, Wüst PK, Geppert A, Foesel BU, Huber KJ et al. Novel isolates double the number of chemotrophic species and allow the first description of higher taxa in Acidobacteria subdivision 4. Syst Appl Microbiol 2015; 38:534–544 [View Article] [PubMed]
    [Google Scholar]
  49. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  50. Sasser M. Identification of bacteria by gas chromatography of cllular fatty acids. Stat 20011–6
    [Google Scholar]
  51. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  52. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. eds Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp 330–393 [View Article]
    [Google Scholar]
  53. Švec P, Králová S, Busse H-J, Kleinhagauer T, Pantůček R et al. Pedobacter jamesrossensis sp. nov., Pedobacter lithocola sp. nov., Pedobacter mendelii sp. nov. and Pedobacter petrophilus sp. nov., isolated from the Antarctic environment. Int J Syst Evol Microbiol 2017; 67:1499–1507
    [Google Scholar]
  54. Pankratov TA, Tindall BJ, Liesack W, Dedysh SN. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 2007; 57:2349–2354 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006134
Loading
/content/journal/ijsem/10.1099/ijsem.0.006134
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error