1887

Abstract

A Gram-stain-negative, rod-shaped, amylolytic bacterial strain, designated as bsSlp3-1, was isolated from the Slepian water system, a freshwater reservoir. Strain bsSlp3-1 was found to be aerobic, oxidase-positive and catalase-negative, grew at 5–37 °C (optimum, 28 °C), pH 5.0–9.5 (optimum, pH 7.0) and low NaCl concentration (up to 1.0 %). Comparative analysis of 16S rRNA gene sequence similarity revealed that strain bsSlp3-1 clustered with species and is closely related to KCTC 42856 (98.7 %) and CCUG 52222 (98.6 %). Whole-genome comparisons using average nucleotide identity and digital DNA–DNA hybridization values suggested that strain bsSlp3-1 represents a novel species within the genus and is most closely related to CCUG 48205 (81.2 and 25.6 %, respectively). The genome of strain bsSlp3-1 consisted of a single circular chromosome with size 6 289 366 bp and DNA G+C content of 66.8 mol%. The predominant cellular fatty acids of bsSlp3-1 were -9-hexadecanoic and hexadecenoic acids. According to the data obtained in this work, strain bsSlp3-1 represents a novel species for which the name sp. nov. is proposed. The type strain is bsSlp3-1 (=BIM B-1768=NBIMCC 9098=VKM B-3671).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006133
2023-11-02
2024-07-25
Loading full text...

Full text loading...

References

  1. Suyama T, Shigematsu T, Takaichi S, Nodasaka Y, Fujikawa S et al. Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the β-subclass of the Proteobacteria. Int J Syst Evol Microbiol 1999; 49:449–457 [View Article]
    [Google Scholar]
  2. Gomila M, Bowien B, Falsen E, Moore ERB, Lalucat J. Description of Roseateles aquatilis sp. nov. and Roseateles terrae sp. nov., in the class Betaproteobacteria, and emended description of the genus Roseateles. Int J Syst Evol Microbiol 2008; 58:6–11 [View Article] [PubMed]
    [Google Scholar]
  3. Xie CH, Yokota A. Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol 2005; 55:2419–2425 [View Article] [PubMed]
    [Google Scholar]
  4. Gomila M, Bowien B, Falsen E, Moore ER, Lalucat J. Description of Pelomonas aquatica sp. nov. and Pelomonas puraquae sp. nov., isolated from industrial and haemodialysis water. Int J Syst Evol Microbiol 2007; 57:2629–2635 [View Article]
    [Google Scholar]
  5. Gomila M, Pinhassi J, Falsen E, Moore ERB. Kinneretia asaccharophila gen. nov., sp. nov.,isolated from a freshwater lake, a member of the Rubrivivax branch of the family Comamonadaceae. Int J Syst Evol Microbiol 2010; 60:809–814 [View Article]
    [Google Scholar]
  6. Rapala J, Berg KA, Lyra C, Niemi RM, Manz W et al. Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin. Int J Syst Evol Microbiol 2005; 55:1563–1568 [View Article] [PubMed]
    [Google Scholar]
  7. Pheng S, Lee JJ, Eom MK, Lee KH, Kim SG. Paucibacter oligotrophus sp. nov., isolated from fresh water, and emended description of the genus Paucibacter. Int J Syst Evol Microbiol 2017; 67:2231–2235 [View Article] [PubMed]
    [Google Scholar]
  8. Amakata D, Matsuo Y, Shimono K, Park JK, Yun CS et al. Mitsuaria chitosanitabida gen. nov., sp. nov., an aerobic, chitosanase-producing member of the “Betaproteobacteria.”. Int J Syst Evol Microbiol 2005; 55:1927–1932 [View Article] [PubMed]
    [Google Scholar]
  9. Sisinthy S, Gundlapally SR. Mitsuaria chitinivorans sp. nov. a potential candidate for bioremediation: emended description of the genera Mitsuaria, Roseateles and Pelomonas. Arch Microbiol 2020; 202:1839–1848 [View Article] [PubMed]
    [Google Scholar]
  10. Fan M-C, Nan L-J, Zhu Y-M, Chen W-M, Wei G-H, Lin Y-B. Mitsuaria noduli sp. nov., isolated from the root nodules of Robinia pseudoacacia in a lead-zinc mine. Int J Syst Evol Microbiol 2018; 68:87–92 [View Article] [PubMed]
    [Google Scholar]
  11. Liu Y, Du J, Pei T, Du H, Feng GD et al. Genome-based taxonomic classification of the closest-to-Comamonadaceae group supports a new family Sphaerotilaceae fam. nov. and taxonomic revisions. Syst Appl Microbiol 2022; 45:126352 [View Article] [PubMed]
    [Google Scholar]
  12. Sikolenko MA, Valentovich LN. Barapost: binning of nucleotide sequences according to taxonomic annotation. IEEE/ACM Trans Comput Biol Bioinform 2021; 18:2766–2767 [View Article] [PubMed]
    [Google Scholar]
  13. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  14. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  15. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  16. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  17. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  18. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  22. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  23. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article]
    [Google Scholar]
  24. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  25. Hitch TCA, Riedel T, Oren A, Overmann J, Lawley TD et al. Automated analysis of genomic sequences facilitates high-throughput and comprehensive description of bacteria. ISME Commun 2021; 1:16 [View Article] [PubMed]
    [Google Scholar]
  26. Chun J, Rainey FAY. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article] [PubMed]
    [Google Scholar]
  27. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  28. Lomsadze A, Gemayel K, Tang S, Borodovsky M. Modeling leaderless transcription and atypical genes results in more accurate gene prediction in prokaryotes. Genome Res 2018; 28:1079–1089 [View Article] [PubMed]
    [Google Scholar]
  29. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  30. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [View Article]
    [Google Scholar]
  31. Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 2018; 46:W246–W251 [View Article] [PubMed]
    [Google Scholar]
  32. Lee SH, Choe H, Kim SG, Park DS, Nasir A et al. Complete genome of biodegradable plastics-decomposing Roseateles depolymerans KCTC 42856(T) (=61A(T)). J Biotechnol 2016; 220:47–48 [View Article] [PubMed]
    [Google Scholar]
  33. Chaudhuri A, Halder K, Datta A. Classification of CRISPR/Cas system and its application in tomato breeding. Theor Appl Genet 2022; 135:367–387 [View Article] [PubMed]
    [Google Scholar]
  34. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. In MIDI Technical Note 101 Newark DE: MIDI; 1990 pp 1–7
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006133
Loading
/content/journal/ijsem/10.1099/ijsem.0.006133
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error