1887

Abstract

Six Gram-stain-positive, facultative anaerobic, nonmotile and rod-shaped strains, designated zg-Y50, zg-Y1362, zg-Y1379, zg-Y869, zg-629 and zg-Y636, were isolated from the intestinal contents of in Qinghai Province, PR China. Strains zg-Y50, zg-Y1379 and zg-629 exhibited the highest 16S rRNA gene sequence similarities of 99.2, 98.9 and 98.8 % to 9 H-4, JCM 14732 and TYLN1, respectively. Phylogenetic and phylogenomic analyses based on the 16S rRNA gene and genomic sequences, respectively, revealed that the six strains formed three distinct clades within the genus . The genome sizes of strains zg-Y50, zg-Y1379 and zg-629 were 3.1–3.7 Mb, with DNA G+C contents of 69.6–70.4 mol%. Average nucleotide identity and digital DNA–DNA hybridization values between each novel strain and available members of the genus were all below species thresholds. All novel strains contained MK-9 (H) as the major menaquinone and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as the polar lipids. The predominant fatty acid of the six isolates was C 9. The cell-wall peptidoglycan contained ʟʟ-diaminopimelic acid as the diagnostic diamino acid. Based on the results from this polyphasic taxonomic study, three novel species in the genus are proposed, namely, sp. nov. (zg-Y50=GDMCC 1.2981=KCTC 49764), sp. nov. (zg-Y1379=GDMCC 1.2982=KCTC 49765) and sp. nov. (zg-629=CGMCC 1.17414=JCM 33888).

Funding
This study was supported by the:
  • the Research Units of Discovery of Unknown Bacteria and Function (Award 2018RU010)
    • Principle Award Recipient: JianguoXu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006118
2023-11-02
2024-10-06
Loading full text...

Full text loading...

References

  1. Miller ES, Woese CR, Brenner S. Description of the erythromycin-producing bacterium Arthrobacter sp. strain NRRL B-3381 as Aeromicrobium erythreum gen. nov., sp. nov. Int J Syst Bacteriol 1991; 41:363–368 [View Article] [PubMed]
    [Google Scholar]
  2. Yoon JH, Lee CH, Oh TK. Aeromicrobium alkaliterrae sp. nov., isolated from an alkaline soil, and emended description of the genus Aeromicrobium. Int J Syst Evol Microbiol 2005; 55:2171–2175 [View Article]
    [Google Scholar]
  3. Cui Y-S, Im W-T, Yin C-R, Lee J-S, Lee KC et al. Aeromicrobium panaciterrae sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 2007; 57:687–691 [View Article] [PubMed]
    [Google Scholar]
  4. Kim MK, Park MJ, Im WT, Yang DC. Aeromicrobium ginsengisoli sp. nov., isolated from a ginseng field. Int J Syst Evol Microbiol 2008; 58:2025–2030 [View Article] [PubMed]
    [Google Scholar]
  5. Siddiqi MZ, Lee SY, Choi KD, Im WT. Aeromicrobium panacisoli sp. nov. Isolated from soil of ginseng cultivating field. Curr Microbiol 2018; 75:624–629 [View Article] [PubMed]
    [Google Scholar]
  6. Bruns A, Philipp H, Cypionka H, Brinkhoff T. Aeromicrobium marinum sp. nov., an abundant pelagic bacterium isolated from the German Wadden Sea. Int J Syst Evol Microbiol 2003; 53:1917–1923 [View Article] [PubMed]
    [Google Scholar]
  7. Lee DW, Lee SD. Aeromicrobium ponti sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2008; 58:987–991 [View Article] [PubMed]
    [Google Scholar]
  8. Sun Y, Liu W-H, Ai M-J, Su J, Yu L-Y et al. Aeromicrobium lacus sp. nov., a novel actinobacterium isolated from a drinking-water reservoir. Int J Syst Evol Microbiol 2019; 69:460–464 [View Article]
    [Google Scholar]
  9. Tang Y, Zhou G, Zhang L, Mao J, Luo X et al. Aeromicrobium flavum sp. nov., isolated from air. Int J Syst Evol Microbiol 2008; 58:1860–1863 [View Article] [PubMed]
    [Google Scholar]
  10. Tamura T, Yokota A. Transfer of Nocardioides fastidiosa collins and Stackebrandt 1989 to the genus Aeromicrobium as Aeromicrobium fastidiosum comb. nov. Int J Syst Bacteriol 1994; 44:608–611 [View Article]
    [Google Scholar]
  11. Lee SD, Kim SJ. Aeromicrobium tamlense sp. nov., isolated from dried seaweed. Int J Syst Evol Microbiol 2007; 57:337–341 [View Article] [PubMed]
    [Google Scholar]
  12. Niu L, Xiong M, Tang T, Song L, Hu X et al. Aeromicrobium camelliae sp. nov., isolated from Pu′er tea. Int J Syst Evol Microbiol 2015; 65:4369–4373 [View Article]
    [Google Scholar]
  13. Tuo L, Yan XR, Liu Y. Aeromicrobium endophyticum sp. nov., a novel endophytic actinobacterium isolated from bark of Melia azedaeach L. Int J Syst Evol Microbiol 2020; 70:693–699 [View Article] [PubMed]
    [Google Scholar]
  14. Kim SH, Yang HO, Sohn YC, Kwon HC. Aeromicrobium halocynthiae sp. nov., a taurocholic acid-producing bacterium isolated from the marine ascidian Halocynthia roretzi. Int J Syst Evol Microbiol 2010; 60:2793–2798 [View Article] [PubMed]
    [Google Scholar]
  15. Ber P, Trappen SV, Vandamme P, Trček J. Aeromicrobium choanae sp. nov., an actinobacterium isolated from the choana of a garden warbler. Int J Syst Evol Microbiol 2017; 67:357–361 [View Article] [PubMed]
    [Google Scholar]
  16. Li JQ, Lei WJ, Yang J, Lu S, Jin D et al. Aeromicrobium chenweiae sp. nov. and Aeromicrobium yanjiei sp. nov., isolated from Tibetan antelope (Pantholops hodgsonii) and plateau pika (Ochotona curzoniae), respectively. Int J Syst Evol Microbiol 2020; 70: [View Article] [PubMed]
    [Google Scholar]
  17. Zhao L-H, Xing X, Liu Y-Y, Sha S, Song C et al. Aeromicrobium piscarium sp. nov., isolated from the intestine of Collichthys lucidus. Int J Syst Evol Microbiol 2020; 70:5280–5286 [View Article]
    [Google Scholar]
  18. Ramasamy D, Kokcha S, Lagier J-C, Nguyen T-T, Raoult D et al. Genome sequence and description of Aeromicrobium massiliense sp. nov. Stand Genomic Sci 2012; 7:246–257 [View Article] [PubMed]
    [Google Scholar]
  19. Luo X-L, Lu S, Jin D, Yang J, Wu S-S et al. Marmota himalayana in the Qinghai-Tibetan plateau as a special host for bi-segmented and unsegmented picobirnaviruses. Emerg Microbes Infect 2018; 7:20 [View Article] [PubMed]
    [Google Scholar]
  20. Jin D, Chen C, Li L, Lu S, Li Z et al. Dynamics of fecal microbial communities in children with diarrhea of unknown etiology and genomic analysis of associated Streptococcus lutetiensis. BMC Microbiol 2013; 13:141–152 [View Article] [PubMed]
    [Google Scholar]
  21. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  22. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  23. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002; Chapter 2:Unit [View Article] [PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  25. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095 [View Article] [PubMed]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  27. McCarthy A. Third generation DNA sequencing: pacific biosciences’ single molecule real time technology. Chem Biol 2010; 17:675–676 [View Article] [PubMed]
    [Google Scholar]
  28. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article] [PubMed]
    [Google Scholar]
  29. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  30. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119–129 [View Article] [PubMed]
    [Google Scholar]
  31. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006; 22:1658–1659 [View Article] [PubMed]
    [Google Scholar]
  32. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article] [PubMed]
    [Google Scholar]
  33. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article] [PubMed]
    [Google Scholar]
  34. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [View Article] [PubMed]
    [Google Scholar]
  35. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  36. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  37. Wayne LG. International Committee on Systematic Bacteriology: announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Zentralbl Bakteriol Mikrobiol Hyg A 1988; 268:433–434 [View Article] [PubMed]
    [Google Scholar]
  38. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  39. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article] [PubMed]
    [Google Scholar]
  40. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  41. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res 2004; 32:D277–80 [View Article] [PubMed]
    [Google Scholar]
  42. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note Newark, DE: MIDI; 1990
    [Google Scholar]
  43. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  44. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  45. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  46. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006118
Loading
/content/journal/ijsem/10.1099/ijsem.0.006118
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error