1887

Abstract

Strain FSQ1 was isolated from the rhizosphere of the common bean ( L.) crop sampled in a commercial field located in the Gabriel Leyva Solano community, which belongs to the Guasave municipality (state of Sinaloa, Mexico). Based on its full-length 16S rRNA gene sequence, strain FSQ1 was assigned to the genus (100 % similarity). This taxonomic affiliation was supported by its morphological and metabolic traits. Strain FSQ1 was a Gram-stain-positive bacterium with the following characteristics: rod-shaped cells, strictly aerobic, spore forming, catalase positive, reduced nitrate to nitrite, hydrolysed starch and casein, grew in the presence of lysozyme and 2 % NaCl, utilized citrate, grew at pH 6.0–8.0, produced acid from glucose, was unable to produce indoles from tryptophan, and presented biological control against . The whole-genome phylogenetic results showed that strain FSQ1 formed an individual clade in comparison with highly related species. In addition, the maximum values for average nucleotide identity and from Genome-to-Genome Distance Calculator analysis were 91.57 and 44.20 %, respectively, with TU-B-10. Analysis of its fatty acid content showed the ability of strain FSQ1 to produce fatty acids that are not present in closely related species, such as C and C. Thus, these results provide strong evidence that strain FSQ1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is FSQ1 (CM-CNRG TB51=LBPCV FSQ1).

Funding
This study was supported by the:
  • PROFAPI-ITSON (Award PROFAPI 2023_0002)
    • Principle Award Recipient: Sergiode los Santos Villalobos
  • CONACYT (Award 257246)
    • Principle Award Recipient: Sergiode los Santos Villalobos
  • CONACYT (Award 1774)
    • Principle Award Recipient: Sergiode los Santos Villalobos
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006110
2023-11-01
2024-05-08
Loading full text...

Full text loading...

References

  1. Cohn F. Untersuchungen Über Bakterien. Beitrage zur Biologie Pflanz 1872; 1:127–1224
    [Google Scholar]
  2. Bhattacharya D, de Los Santos Villalobos S, Ruiz VV, Selvin J, Mukherjee J. Bacillus rugosus sp. nov. producer of a diketopiperazine antimicrobial, isolated from marine sponge Spongia officinalis L. Springer Nature Switzerland 2020; 113:1675–1687 [PubMed]
    [Google Scholar]
  3. Villarreal-Delgado M, Villa-Rodríguez E, Cira-Chávez L, Estrada-Alvarado M, Parra-Cota F et al. The genus Bacillus as a biological control agent and its implications in the agricultural biosecurity. Mex J Phytopathol 2018; 36:95–130 [View Article]
    [Google Scholar]
  4. Córdova-Albores LC, Zelaya-Molina LX, Ávila-Alistac N, Valenzuela-Ruíz V, Cortés-Martínez NE et al. Omics sciences potential on bioprospecting of biological control microbial agents: the case of the Mexican agro-biotechnology. Mexican J Phytopathol 2021; 39:147–184 [View Article]
    [Google Scholar]
  5. Cruz Cardenas C, Zelaya Molina L, Sandoval Cancino G, de los Santos Villalobos S, Rojas Anaya E et al. Utilización de microorganismos para una agricultura sostenible en México: consideraciones y retos. Revista Mexicana de CienciasAgrícolas 2021; 12:899–913 [View Article]
    [Google Scholar]
  6. Villarreal-Delgado M, Parra-Cota F, Cira-Chávez L, Estrada-Alvarado M, de los Santos-Villalobos S. Bacillus sp. FSQ1: a promising biological control agent against Sclerotinia sclerotiorum, the causal agent of white mold in common bean (Phaseolus vulgaris L). Biol Bull 2021; 48:729–739 [View Article]
    [Google Scholar]
  7. Samaras A, Roumeliotis E, Ntasiou P, Karaoglanidis G. Bacillus subtilis MBI600 promotes growth of tomato plants and induces systemic resistance contributing to the control of soilborne pathogens. Plants 2021; 10:1113 [View Article] [PubMed]
    [Google Scholar]
  8. Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q et al. Biological control of plant pathogens: a global perspective. Microorganisms 2022; 10:596 [View Article] [PubMed]
    [Google Scholar]
  9. Alori ET, Babalola OO. Microbial inoculants for improving crop quality and human health in Africa. Front Microbiol 2018; 9:2213 [View Article] [PubMed]
    [Google Scholar]
  10. Manfredini A, Malusà E, Costa C, Pallottino F, Mocali S et al. Current methods, common practices, and perspectives in tracking and monitoring bioinoculants in soil. Front Microbiol 2021; 12:698491 [View Article]
    [Google Scholar]
  11. Gupta RS, Patel S, Saini N, Chen S. Robust demarcation of seventeen distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for emended genus Bacillus limiting it only to the members of the subtilis and cereus clades of species. Int J Syst Evol Microbiol 2020; 70:6531–6533 [View Article] [PubMed]
    [Google Scholar]
  12. Morales P, Valenzuela V, Ortega M, Martínez A, Félix C et al. Taxonomía bacteriana basada en Índices relacionados al genoma completo. La Sociedad Académica 2021; 58:39–50
    [Google Scholar]
  13. Valenzuela R, Cortez R, Zazopulos M y Carmi J. Determinación del perfil de ácidos grasos de bacterias del género Vibrio por cromatografía de gases. Scientia Chromatographica 2012; 4:271–280 [View Article]
    [Google Scholar]
  14. De Carvalho CCCR, Caramujo MJ. The various roles of fatty acids. Molecules 2018; 23:2583 [View Article] [PubMed]
    [Google Scholar]
  15. Cronan JE, Thomas J. Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol 2009; 459:395–433 [View Article] [PubMed]
    [Google Scholar]
  16. Armenta C. Aislamiento y caracterización de agentes de control biológico contra el agente causal del moho blanco (Sclerotinia sclerotiorum) en el frijol (Phaseolus vulgaris) [Tesis de pregrado]. Instituto Tecnologico de Sonora 2015
    [Google Scholar]
  17. de los Santos-Villalobos S, Parra-Cota F, Herrera-Sepúlveda A, Valenzuela-Aragón B, Estrada-Mora J. Colmena: colección de microorganismos edáficos y endófitos nativos, para contribuir a la seguridad alimentaria nacional. Rev Mex Cienc Agríc 2018; 9:191–202 [View Article]
    [Google Scholar]
  18. de los Santos-Villalobos S, Díaz-Rodríguez AM, Ávila-Mascareño MF, Martínez-Vidales AD, Parra-Cota FI. COLMENA: a culture collection of native microorganisms for harnessing the agro-biotechnological potential in soils and contributing to food security. Diversity 2021; 13:337 [View Article]
    [Google Scholar]
  19. Félix-Pablos C, Parra-Cota F, Santoyo G, Orozco-Mosqueda M, de Los Santos-Villalobos S. Draft genome sequence of Bacillus sp. strain FSQ1, a biological control agent against white mold in common bean (Phaseolus vulgaris L.). Curr Res Microb Sci 2022; 3:100138 [View Article] [PubMed]
    [Google Scholar]
  20. de los Santos Villalobos S, Robles RI, Parra Cota FI, Larsen J, Lozano P et al. Bacillus cabrialesii sp. nov., an endophytic plant growth promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) in the Yaqui Valley, Mexico. Int J Syst Evol Microbiol 2019; 69:3939–3945 [View Article]
    [Google Scholar]
  21. Valenzuela-Aragon B, Parra-Cota FI, Santoyo G, Arellano-Wattenbarger GL, de los Santos-Villalobos S. Plant-assisted selection: a promising alternative for in vivo identification of wheat (Triticum turgidum L. subsp. durum) growth promoting bacteria. Plant Soil 2018; 435:367–384 [View Article]
    [Google Scholar]
  22. Andrews S. FastQC: a quality control tool for high throughput sequence data 2010 http://www.bioinformatics.babraham.ac.uk/projects/fastqc
    [Google Scholar]
  23. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  25. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  26. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  27. Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD et al. Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 2009; 25:2071–2073 [View Article] [PubMed]
    [Google Scholar]
  28. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75–15 [View Article] [PubMed]
    [Google Scholar]
  29. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  30. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  31. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  33. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  34. Yoon S-H, Ha S, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  36. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst EvolMicrobiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  37. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  38. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  39. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  40. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 2017; 35:1026–1028 [View Article] [PubMed]
    [Google Scholar]
  41. MIDI Sherlock Instant FAME User's Guide; 2012 http://midi-inc.com/pdf/Sherlock_MIS_Instant_FAME_Manual.pdf
  42. Rooney AP, Price NPJ, Ehrhardt C, Swezey JL, Bannan JD. Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int J Syst Evol Microbiol 2009; 59:2429–2436 [View Article] [PubMed]
    [Google Scholar]
  43. Duangkaew P, Monkhung S. Antifungal activity of Bacillus subtilis subsp. spizizenii BL-59 to control some important postharvest diseases of mango fruits (Mangifera indica L.). Int J Agric Technol 2021; 17:2053–2066
    [Google Scholar]
  44. Kamali M, Guo D, Naeimi S, Ahmadi J. Perception of biocontrol potential of Bacillus inaquosorum KR2-7 against tomato Fusarium wilt through merging genome mining with chemical analysis. Biology 2022; 11:137 [View Article] [PubMed]
    [Google Scholar]
  45. Villa-Rodriguez E, Moreno-Ulloa A, Castro-Longoria E, Parra-Cota FI, de Los Santos-Villalobos S. Integrated omics approaches for deciphering antifungal metabolites produced by a novel Bacillus species, B. cabrialesii TE3T, against the spot blotch disease of wheat (Triticum turgidum L. subsp. durum). Microbiol Res 2021; 251:126826 [View Article] [PubMed]
    [Google Scholar]
  46. Munakata Y, Heuson E, Daboudet T, Deracinois B, Duban M et al. Screening of antimicrobial activities and lipopeptide production of endophytic bacteria isolated from vetiver roots. Microorganisms 2022; 10:209 [View Article] [PubMed]
    [Google Scholar]
  47. Leconte A, Tournant L, Muchembled J, Paucellier J, Héquet A et al. Assessment of lipopeptide mixtures produced by Bacillus subtilis as biocontrol products against apple scab (Venturia inaequalis). Microorganisms 2022; 10:1810 [View Article] [PubMed]
    [Google Scholar]
  48. Li Y, Wang R, Liu J, Xu L, Ji P et al. Identification of a biocontrol agent Bacillus vallismortis BV23 and assessment of effects of its metabolites on Fusarium graminearum causing corn stalk rot. Biocontrol Sci Technol 2019; 29:263–275 [View Article]
    [Google Scholar]
  49. De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. Bergey’s Manual of Systematic Bacteriology. Volume 3: The Firmicutes. 2nd edn New York, NY: Springer-Verlag; 2009
    [Google Scholar]
  50. Logan NA, Berge O, Bishop AH, Busse H-J, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article] [PubMed]
    [Google Scholar]
  51. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  52. Kramer J, Özkaya Ö, Kümmerli R. Bacterial siderophores in community and host interactions. Nat Rev Microbiol 2020; 18:152–163 [View Article] [PubMed]
    [Google Scholar]
  53. Rodrigues A, Gudiña E, Teixeira J, Rodrigues L. Biosurfactants as biocontrol agents against mycotoxigenic fungi. In Sarma H, Vara M. eds Biosurfactants for a Sustainable Future, 1st edn. India: Wiley; 2021 pp 465–490 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006110
Loading
/content/journal/ijsem/10.1099/ijsem.0.006110
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error