1887

Abstract

An aerobic, Gram-negative, non-motile, yellow-to-orange pigmented and round bacterium, designated strain SCSIO 72103, was isolated from sediment collected in the Pearl River Estuary, Guangdong Province, PR China and subjected to a polyphasic taxonomic study. Growth occurred at 20–37 °C (optimum, 28 °C), pH 6–8 (optimum, pH 7) and with 1–5.5% NaCl (optimum, 1–3 %). Comparative 16S rRNA gene analysis indicated that strain SCSIO 72103 had the highest similarities to SNL9 (94.7 %) and SW105 (94.2 %). Phylogenetic analysis based 16S rRNA gene sequences showed that strain SCSIO 72103 formed a single clade with SW105. Strain SCSIO 72103 contained iso-C as the major fatty acid and the predominant respiratory quinone was menaquinone MK-6. These characteristics are consistent with those of SNL9 and SW105. Phosphatidylethanolamine, most notably, unidentified aminolipid and unidentified aminophospholipid were major polar lipids. Strain SCSIO 72103 had a single circular chromosome of 2.96 Mb with a DNA G+C content of 35.1 mol%. The average nucleotide identity, average amino acid identity (AAI) and digital DNA–DNA hybridization values showed that the pairwise similarities between SCSIO 72103 and the type strains of SNL9 and SW105 were 78.5–80.5 %, 79.0–81.4 % and 22.7–22.8 %, respectively. The AAI values between species in this clade and the type species of and were below the 65 % threshold, indicating that these species belong to a novel genus. On the basis of phylogenetic, physiological and chemotaxonomic characteristics, strain SCSIO 72103 represents a new species of a novel genus, for which the name gen. nov. sp. nov. is proposed. The type strain is SCSIO 72103 (=KCTC 92043=MCCC 1K06659). It is also proposed that nine known species in the genera and are reclassified as species.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award No. 32170018)
    • Principle Award Recipient: Xin-PengTian
  • Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (Award 2019BT02Y262)
    • Principle Award Recipient: Xin-PengTian
  • Natural Science Foundation of Hainan Province (Award 321CXTD447)
    • Principle Award Recipient: Xin-PengTian
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006091
2023-10-26
2024-05-08
Loading full text...

Full text loading...

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM. Flavobacterium gen. nov. In Whitman W. eds Bergey’s Manual of Determinative Bacteriology Baltimore: Williams & Wilkins; 1923 pp 97–117
    [Google Scholar]
  2. Vancanneyt M, Segers P, Torck U, Hoste B, Bernardet J-F et al. Reclassification of Flavobacterium odoratum (Stutzer 1929) strains to a new genus, Myroides, as Myroides odoratus comb. nov. and Myroides odoratimimus sp. nov. Int J Syst Bacteriol 1996; 46:926–932 [View Article]
    [Google Scholar]
  3. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  4. Chhetri G, Yang D, Choi J, Kim H, Seo T. Flavobacterium edaphi sp. nov., isolated from soil from Jeju Island, Korea. Arch Microbiol 2019; 201:539–545
    [Google Scholar]
  5. Tomova A, Tomova I, Vasileva-Tonkova E, Lazarkevich I, Stoilova-Disheva M et al. Myroides guanonis sp. nov., isolated from prehistoric paintings. Int J Syst Evol Microbiol 2013; 63:4266–4270 [View Article] [PubMed]
    [Google Scholar]
  6. Kacagan M, Inan K, Belduz AO, Canakci S. Flavobacterium anatoliense sp. nov., isolated from fresh water, and emended description of Flavobacterium ceti. Int J Syst Evol Microbiol 2013; 63:2075–2081 [View Article] [PubMed]
    [Google Scholar]
  7. Lata P, Lal D, Lal R. Flavobacterium ummariense sp. nov., isolated from hexachlorocyclohexane-contaminated soil, and emended description of Flavobacterium ceti Vela et al. 2007. Int J Syst Evol Microbiol 2012; 62:2674–2679 [View Article] [PubMed]
    [Google Scholar]
  8. Zhang X-Y, Zhang Y-J, Chen X-L, Qin Q-L, Zhao D-L et al. Myroides profundi sp. nov., isolated from deep-sea sediment of the southern Okinawa Trough. FEMS Microbiol Lett 2008; 287:108–112 [View Article] [PubMed]
    [Google Scholar]
  9. Paek J, Shin JH, Shin Y, Park I-S, Jin T-E et al. Myroides injenensis sp. nov., a new member isolated from human urine. Antonie van Leeuwenhoek 2015; 107:201–207 [View Article] [PubMed]
    [Google Scholar]
  10. Miyashita M, Fujimura S, Nakagawa Y, Nishizawa M, Tomizuka N et al. Flavobacterium algicola sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 2010; 60:344–348 [View Article] [PubMed]
    [Google Scholar]
  11. Romanenko LA, Tanaka N, Svetashev VI, Kurilenko VV, Mikhailov VV. Flavobacterium maris sp. nov. isolated from shallow sediments of the Sea of Japan. Arch Microbiol 2015; 197:941–947 [View Article] [PubMed]
    [Google Scholar]
  12. Vela AI, Fernandez A, Sánchez-Porro C, Sierra E, Mendez M et al. Flavobacterium ceti sp. nov., isolated from beaked whales (Ziphius cavirostris). Int J Syst Evol Microbiol 2007; 57:2604–2608 [View Article] [PubMed]
    [Google Scholar]
  13. Song L, Liu H, Huang Y, Dai X, Zhou Y. Flavobacterium marinum sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2013; 63:3551–3555 [View Article] [PubMed]
    [Google Scholar]
  14. Cho S-H, Chae S-H, Im W-T, Kim SB. Myroides marinus sp. nov., a member of the family Flavobacteriaceae, isolated from seawater. Int J Syst Evol Microbiol 2011; 61:938–941 [View Article] [PubMed]
    [Google Scholar]
  15. Yoon J, Maneerat S, Kawai F, Yokota A. Myroides pelagicus sp. nov., isolated from seawater in Thailand. Int J Syst Evol Microbiol 2006; 56:1917–1920 [View Article] [PubMed]
    [Google Scholar]
  16. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article] [PubMed]
    [Google Scholar]
  17. Pei S, Xie F, Niu S, Ma L, Zhang R et al. Brevibacterium profundi sp. nov., isolated from deep-sea sediment of the Western Pacific Ocean. Int J Syst Evol Microbiol 2020; 70:5818–5823 [View Article] [PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  23. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  24. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article] [PubMed]
    [Google Scholar]
  25. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  26. Chan PP, Lowe TM. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol 2019; 1962:1–14 [View Article] [PubMed]
    [Google Scholar]
  27. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:14 [View Article] [PubMed]
    [Google Scholar]
  29. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article] [PubMed]
    [Google Scholar]
  30. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  31. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  32. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  33. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article] [PubMed]
    [Google Scholar]
  34. Wu Y-H, Zhou P, Jian S-L, Liu Z-S, Wang C-S et al. Pontibacter amylolyticus sp. nov., isolated from a deep-sea sediment hydrothermal vent field. Int J Syst Evol Microbiol 2016; 66:1760–1767 [View Article] [PubMed]
    [Google Scholar]
  35. Liu Q, Li W, Liu D, Li L, Li J et al. Light stimulates anoxic and oligotrophic growth of glacial Flavobacterium strains that produce zeaxanthin. ISME J 2021; 15:1844–1857 [View Article] [PubMed]
    [Google Scholar]
  36. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article] [PubMed]
    [Google Scholar]
  37. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:1–6
    [Google Scholar]
  38. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  39. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  40. Chhetri G, Kim J, Kim I, Kang M, Lee B et al. Flavobacterium baculatum sp. nov., a carotenoid and flexirubin-type pigment producing species isolated from flooded paddy field. Int J Syst Evol Microbiol 2019; 71:004736 [View Article] [PubMed]
    [Google Scholar]
  41. Mammeri H, Bellais S, Nordmann P. Chromosome-encoded beta-lactamases TUS-1 and MUS-1 from Myroides odoratus and Myroides odoratimimus (formerly Flavobacterium odoratum), new members of the lineage of molecular subclass B1 metalloenzymes. Antimicrob Agents Chemother 2002; 46:3561–3567 [View Article] [PubMed]
    [Google Scholar]
  42. Chen X-L, Xie B-B, Bian F, Zhao G-Y, Zhao H-L et al. Ecological function of myroilysin, a novel bacterial M12 metalloprotease with elastinolytic activity and a synergistic role in collagen hydrolysis, in biodegradation of deep-sea high-molecular-weight organic nitrogen. Appl Environ Microbiol 2009; 75:1838–1844 [View Article] [PubMed]
    [Google Scholar]
  43. Maneerat S, Nitoda T, Kanzaki H, Kawai F. Bile acids are new products of a marine bacterium, Myroides sp strain SM1. Appl Microbiol Biotechnol 2005; 67:679–683 [View Article] [PubMed]
    [Google Scholar]
  44. García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T et al. Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front Microbiol 2019; 10:2083 [View Article] [PubMed]
    [Google Scholar]
  45. Liu H, Lu P, Zhu G. Flavobacterium cloacae sp. nov., isolated from waste water. Int J Syst Evol Microbiol 2017; 67:659–663 [View Article] [PubMed]
    [Google Scholar]
  46. Chaudhary DK, Kim J. Flavobacterium naphthae sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2018; 68:305–309 [View Article] [PubMed]
    [Google Scholar]
  47. Li G, Chen X, Li Y, Shi S, Jiang L. Flavobacterium viscosus sp. nov. and Flavobacterium tangerina sp. nov., from primates feces. Curr Microbiol 2019; 76:818–823 [View Article] [PubMed]
    [Google Scholar]
  48. Sheu SY, Lin YS, Chen WM. Flavobacterium squillarum sp. nov., isolated from a freshwater shrimp culture pond, and emended descriptions of Flavobacterium haoranii, Flavobacterium cauense, Flavobacterium terrae and Flavobacterium aquatile. Int J Syst Evol Microbiol 2013; 63:2239–2247 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006091
Loading
/content/journal/ijsem/10.1099/ijsem.0.006091
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error