1887

Abstract

Two Gram-stain-negative, catalase- and oxidase-positive, aerobic non-motile and motile rod bacteria, strains MSW6 and RSW2, were isolated from surface seawater. Strain MSW6 optimally grew at 20 °C, pH 7.0 and 3 % NaCl, while strain RSW2 optimally grew at 25 °C, pH 7.0–8.0 and 2 % NaCl. Strain MSW6 possessed menaquinone-6 as the major respiratory quinone, and its major fatty acids were iso-C G, iso-C and iso-C 3-OH. The major polar lipid identified in strain MSW6 was phosphatidylethanolamine (PE). On the other hand, strain RSW2 had ubiquinone-8 as the predominant respiratory quinone, and its major fatty acids consisted of summed feature 3 (C 7 and/or C 6), summed feature 8 (C 7 and/or C 6) and C. The major polar lipids identified in strain RSW2 were PE and phosphatidylglycerol. As the sole respiratory quinone, strain MSW6 possessed menaquinone-6, while strain RSW2 had ubiquinone-8. The DNA G+C contents of strains MSW6 and RSW2 were 31.9 and 43.4 mol%, respectively. Phylogenetic analyses based on 16S rRNA and core gene sequences showed that strain MSW6 formed a phylogenic lineage with KOPRI 13649, while strain RSW2 formed a phylogenic lineage with KMM 3633. Strain MSW6 shared 97.9 % 16S rRNA gene sequence similarity and 80.7 % average nucleotide identity (ANI) ith KOPRI 13649, and strain RSW2 shared 99.1 % 16S rRNA gene sequence similarity and 93.1 % ANI with KMM 3633. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strains MSW6 and RSW2 represent novel species of the genera and , respectively, for which the names sp. nov. and sp. nov. are proposed, respectively. The type strain of is MSW6 (=KACC 22338=JCM 35022) and the type strain of is RSW2 (=KACC 22716=JCM 35550).

Funding
This study was supported by the:
  • Chung-Ang University (Award 2023)
    • Principle Award Recipient: SungChul Lee
  • National Institute of Biological Resources (Award NIBR202304204)
    • Principle Award Recipient: CheOk Jeon
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006090
2023-10-13
2024-05-08
Loading full text...

Full text loading...

References

  1. Bowman JP, McCammon SA, Brown JL, Nichols PD, McMeekin TA. Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats. Int J Syst Bacteriol 1997; 47:670–677 [View Article] [PubMed]
    [Google Scholar]
  2. Kwon KK, Lee SJ, Park JH, Ahn T-Y, Lee HK. Psychroserpens mesophilus sp. nov., a mesophilic marine bacterium belonging to the family Flavobacteriaceae isolated from a young biofilm. Int J Syst Evol Microbiol 2006; 56:1055–1058 [View Article] [PubMed]
    [Google Scholar]
  3. Lee D-H, Cho SJ, Kim SM, Lee SB. Psychroserpens damuponensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2013; 63:703–708 [View Article]
    [Google Scholar]
  4. Baek K, Lee YM, Hwang CY, Park H, Jung Y-J et al. Psychroserpens jangbogonensis sp. nov., a psychrophilic bacterium isolated from Antarctic marine sediment. Int J Syst Evol Microbiol 2015; 65:183–188 [View Article] [PubMed]
    [Google Scholar]
  5. Ping X-Y, Wang K, Zhang J-Y, Wang S-X, Du Z-J et al. Psychroserpens luteolus sp. nov., isolated from Gelidium, reclassification of Ichthyenterobacterium magnum as Psychroserpens magnus comb. nov., Flavihalobacter algicola as Psychroserpens algicola comb. nov., Arcticiflavibacter luteus as Psychroserpens luteus comb. nov. Arch Microbiol 2022; 204:279 [View Article] [PubMed]
    [Google Scholar]
  6. Baumann L, Baumann P, Mandel M, Allen RD. Taxonomy of aerobic marine eubacteria. J Bacteriol 1972; 110:402–429 [View Article] [PubMed]
    [Google Scholar]
  7. Van Landschoot A, De Ley J. Intra- and intergeneric similarities of the rRNA cistrons of alteromonas, Marinomonas (gen. nov.) and some other Gram-negative bacteria. Microbiology 1983; 129:3057–3074 [View Article]
    [Google Scholar]
  8. Espinosa E, Marco-Noales E, Gómez D, Lucas-Elío P, Ordax M et al. Taxonomic study of Marinomonas strains isolated from the seagrass Posidonia oceanica, with descriptions of Marinomonas balearica sp. nov. and Marinomonas pollencensis sp. nov. Int J Syst Evol Microbiol 2010; 60:93–98 [View Article] [PubMed]
    [Google Scholar]
  9. Chang H-W, Roh SW, Kim K-H, Nam Y-D, Yoon J-H et al. Marinomonas basaltis sp. nov., a marine bacterium isolated from black sand. Int J Syst Evol Microbiol 2008; 58:2743–2747 [View Article] [PubMed]
    [Google Scholar]
  10. Romanenko LA, Uchino M, Mikhailov VV, Zhukova NV, Uchimura T. Marinomonas primoryensis sp. nov., a novel psychrophile isolated from coastal sea-ice in the sea of Japan. Int J Syst Evol Microbiol 2003; 53:829–832 [View Article]
    [Google Scholar]
  11. Ivanova EP, Onyshchenko OM, Christen R, Lysenko AM, Zhukova NV et al. Marinomonas pontica sp. nov., isolated from the Black Sea. Int J Syst Evol Microbiol 2005; 55:275–279 [View Article] [PubMed]
    [Google Scholar]
  12. Lau KWK, Ren J, Wai NLM, Lau SCL, Qian P-Y et al. Marinomonas ostreistagni sp. nov., isolated from a pearl-oyster culture pond in Sanya, Hainan Province, China. Int J Syst Evol Microbiol 2006; 56:2271–2275 [View Article] [PubMed]
    [Google Scholar]
  13. Romanenko LA, Tanaka N, Frolova GM. Marinomonas arenicola sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2009; 59:2834–2838 [View Article] [PubMed]
    [Google Scholar]
  14. Chimetto LA, Cleenwerck I, Brocchi M, Willems A, De Vos P et al. Marinomonas brasilensis sp. nov., isolated from the coral Mussismilia hispida, and reclassification of Marinomonas basaltis as a later heterotypic synonym of Marinomonas communis. Int J Syst Evol Microbiol 2011; 61:1170–1175 [View Article]
    [Google Scholar]
  15. Zhang D-C, Margesin R. Marinomonas mangrovi sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2015; 65:1537–1541 [View Article] [PubMed]
    [Google Scholar]
  16. Lasa A, Pichon P, Diéguez AL, Romalde JL. Marinomonas gallaica sp. nov. and Marinomonas atlantica sp. nov., isolated from reared clams (Ruditapes decussatus). Int J Syst Evol Microbiol 2016; 66:3183–3188 [View Article] [PubMed]
    [Google Scholar]
  17. Lucena T, Mesa J, Rodriguez-Llorente ID, Pajuelo E, Caviedes et al. Marinomonas spartinae sp. nov., a novel species with plant-beneficial properties. Int J Syst Evol Microbiol 2016; 66:1686–1691 [View Article] [PubMed]
    [Google Scholar]
  18. Sun X-M, Chen C, Xue Z, He X-Y, Liu N-H. Marinomonas algicola sp. nov. and Marinomonas colpomeniae sp. nov., isolated from marine macroalgae. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  19. Kim KH, Baek JH, Wenting R, Jeon CO. Rheinheimera maricola sp. nov., isolated from seawater of the Yellow Sea. Int J Syst Evol Microbiol 2022; 72:005423 [View Article] [PubMed]
    [Google Scholar]
  20. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  21. Nawrocki EP, Kolbe DL, Eddy SR. Infernal 1.0: inference of RNA alignments. Bioinformatics 2009; 25:1335–1337 [View Article] [PubMed]
    [Google Scholar]
  22. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  23. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  24. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  25. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  26. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  27. Kim J, Na SI, Kim D, Chun J. UBCG2: up-to-date bacterial core genes and pipeline for phylogenomic analysis. J Microbiol 2021; 59:609–615 [View Article] [PubMed]
    [Google Scholar]
  28. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  30. Yu W-N, Du Z-Z, Chang Y-Q, Mu D-S, Du Z-J. Marinomonas agarivorans sp. nov., an agar-degrading marine bacterium isolated from red algae. Int J Syst Evol Microbiol 2020; 70:100–104 [View Article] [PubMed]
    [Google Scholar]
  31. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article] [PubMed]
    [Google Scholar]
  32. Stewart RD, Auffret MD, Roehe R, Watson M. Open prediction of polysaccharide utilisation loci (PUL) in 5414 public Bacteroidetes genomes using PULpy. Microbiology 2018421024 [View Article]
    [Google Scholar]
  33. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1:138–146
    [Google Scholar]
  34. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  35. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article]
    [Google Scholar]
  36. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  37. Sawant SS, Salunke BK, Kim BS. A rapid, sensitive, simple plate assay for detection of microbial alginate lyase activity. Enzyme Microb Technol 2015; 77:8–13 [View Article] [PubMed]
    [Google Scholar]
  38. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  39. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark: MIDI Inc; 1990
    [Google Scholar]
  40. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  41. Yi H, Cho J-C, Chun J. Flavivirga jejuensis gen. nov., sp. nov., and Flavivirga amylovorans sp. nov., new members of the family Flavobacteriaceae isolated from seawater, and emended descriptions of the genera Psychroserpens and Lacinutrix. Int J Syst Evol Microbiol 2012; 62:1061–1068 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006090
Loading
/content/journal/ijsem/10.1099/ijsem.0.006090
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error