1887

Abstract

Light yellowish-white colonies of a bacterial strain, designated LNNU 24178, were isolated from the rhizosphere soil of halophyte (Bunge) Freitag and Schütze grown at Shihezi district, Xinjiang, PR China. Cells were Gram-stain-negative, non-flagellum-forming, rod-shaped and non-motile. The results of phylogenetic analysis based on the 16S rRNA gene sequence indicated that LNNU 24178 represented a member of the genus and shared the highest sequence similarity with CGMCC 1.13927 (97.1 %) and lower sequence similarity (< 97.0 %) to other known species. The genomic DNA G+C content of LNNU 24178 was 68.8 %. The average nucleotide identity (ANI) values between LNNU 24178 and CGMCC 1.13927, DSM 12574, 26-35 and HB2 were 78.7, 78.6, 78.4 and 80.0 %, respectively. The digital DNA–DNA hybridisation (dDDH) values between LNNU 24178 and CGMCC 1.13927, DSM 12574, 26-35 and HB2 were 22.0, 22.3, 22.2 and 23.5 %, respectively. The respiratory quinone detected in LNNU 24178 was ubiquinone-8 (Q-8). The major fatty acids (> 5.0 %) of LNNU 24178 were identified as iso-C (33.9 %), iso-C (8.7 %), iso-C (6.2 %), iso-C (5.7 %), C (5.3 %) and summed feature 9 (iso-Cω9/10-methyl C) (21.1 %). The major polar lipids of LNNU 24178 were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), one unidentified phospholipid (PL), one unidentified glycolipid (GL) and three unidentified lipids. According to the data obtained from phenotypic, chemotaxonomic and phylogenetic analyses, strain LNNU 24178 represents a novel species of the genus , for which the name sp. nov. is proposed, with LNNU 24178 (= CGMCC 1.17331= KCTC 62251) as the type strain.

Funding
This study was supported by the:
  • Educational Department of Liaoning Province (Award LJKMZ20221427)
    • Principle Award Recipient: HongfeiWang
  • Applied Basic Research Project of Liaoning Province (Award 2023JH2/101300167)
    • Principle Award Recipient: HongfeiWang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006088
2023-10-13
2024-05-08
Loading full text...

Full text loading...

References

  1. Finkmann W, Altendorf K, Stackebrandt E, Lipski A, Finkmann W. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2000; 50 Pt 1:273–282 [View Article] [PubMed]
    [Google Scholar]
  2. Tindall BJ. Names at the rank of class, subclass and order, their typification and current status: supplementary information to opinion 79. Judicial Commission of the International Committee on Systematics of Prokaryotes. Int J Syst Evol Microbiol 2014; 64:3599–3602 [View Article] [PubMed]
    [Google Scholar]
  3. Tindall BJ. The family name Solimonadaceae Losey et al. 2013 is illegitimate, proposals to create the names ‘Sinobacter soli’ comb. nov. and ‘Sinobacter variicoloris’ contravene the code, the family name Xanthomonadaceae Saddler and Bradbury 2005 and the order name Xanthomonadales Saddler and Bradbury 2005 are illegitimate and notes on the application of the family names Solibacteraceae Zhou et al. 2008, Nevskiaceae Henrici and Johnson 1935 (approved lists 1980) and Lysobacteraceae Christensen and Cook 1978 (approved lists 1980) and order name Lysobacteriales Christensen and Cook 1978 (approved lists 1980) with respect to the classification of the corresponding type genera Solibacter Zhou et al. 2008 Nevskia Famintzin 1892 (approved lists 1980) and Lysobacter Christensen and Cook 1978 (approved lists 1980) and importance of accurately expressing the link between a taxonomic name, its authors and the corresponding description/circumscription/emendation. Int J Syst Evol Microbiol 2014; 64:293–297 [View Article] [PubMed]
    [Google Scholar]
  4. Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn HE et al. A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie van Leeuwenhoek 2015; 107:467–485 [View Article] [PubMed]
    [Google Scholar]
  5. Rani P, Mukherjee U, Verma H, Kamra K, Lal R. Luteimonas tolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 2016; 66:1851–1856 [View Article] [PubMed]
    [Google Scholar]
  6. Margesin R, Zhang DC, Albuquerque L, Froufe HJC, Egas C et al. Lysobacter silvestris sp. nov., isolated from Alpine forest soil, and reclassification of Luteimonas tolerans as Lysobacter tolerans comb. nov. Int J Syst Evol Microbiol 2016; 66:1851–1856
    [Google Scholar]
  7. Ten LN, Jung H-M, Im W-T, Yoo S-A, Oh H-M et al. Lysobacter panaciterrae sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2009; 59:958–963 [View Article] [PubMed]
    [Google Scholar]
  8. Jin C-Z, Song X, Sung YJ, Jin F-J, Li T et al. Lysobacter profundi sp. nov., isolated from freshwater sediment and reclassification of Lysobacter panaciterrae as Luteimonas panaciterrae comb. nov. Int J Syst Evol Microbiol 2020; 70:3878–3887 [View Article] [PubMed]
    [Google Scholar]
  9. Zhao G-Y, Shao F, Zhang M, Zhang X-J, Wang J-Y et al. Luteimonas rhizosphaerae sp. nov., isolated from the rhizosphere of Triticum aestivum L. Int J Syst Evol Microbiol 2018; 68:1197–1203 [View Article] [PubMed]
    [Google Scholar]
  10. Cheng J, Zhang M-Y, Wang W-X, Manikprabhu D, Salam N et al. Luteimonas notoginsengisoli sp. nov., isolated from rhizosphere. Int J Syst Evol Microbiol 2016; 66:946–950 [View Article] [PubMed]
    [Google Scholar]
  11. Ngo HTT, Yin CS. Luteimonas terrae sp. nov., isolated from rhizosphere soil of Radix ophiopogonis. Int J Syst Evol Microbiol 2016; 66:1920–1925 [View Article] [PubMed]
    [Google Scholar]
  12. Sun Z-B, Zhang H, Yuan X-F, Wang Y-X, Feng D-M et al. Luteimonas cucumeris sp. nov., isolated a from cucumber leaf. Int J Syst Evol Microbiol 2012; 62:2916–2920 [View Article] [PubMed]
    [Google Scholar]
  13. Zhang S, Wang X, Yang J, Lu S, Lai X-H et al. Luteimonas yindakuii sp. nov. isolated from the leaves of dandelion (Taraxacum officinale) on the Qinghai–Tibetan plateau. Int J Syst Evol Microbiol 2020; 70:1007–1014 [View Article] [PubMed]
    [Google Scholar]
  14. Baik KS, Park SC, Kim MS, Kim EM, Park C et al. Luteimonas marina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2008; 58:2904–2908 [View Article] [PubMed]
    [Google Scholar]
  15. Xin Y, Cao X, Wu P, Xue S. Luteimonas dalianensis sp. nov., an obligate marine bacterium isolated from seawater. J Microbiol 2014; 52:729–733 [View Article] [PubMed]
    [Google Scholar]
  16. Romanenko LA, Tanaka N, Svetashev VI, Kurilenko VV, Mikhailov VV. Luteimonas vadosa sp. nov., isolated from seashore sediment. Int J Syst Evol Microbiol 2013; 63:1261–1266 [View Article] [PubMed]
    [Google Scholar]
  17. Lin S-Y, Hameed A, Shahina M, Liu Y-C, Hsu Y-H et al. Description of Luteimonas pelagia sp. nov., isolated from marine sediment, and emended descriptions of Luteimonas aquatica, Luteimonas composti, Luteimonas mephitis, Lysobacter enzymogenes and Lysobacter panaciterrae. Int J Syst Evol Microbiol 2016; 66:645–651 [View Article] [PubMed]
    [Google Scholar]
  18. Fan X, Yu T, Li Z, Zhang XH. Luteimonas abyssi sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014; 64:668–674 [View Article] [PubMed]
    [Google Scholar]
  19. Wu G, Liu Y, Li Q, Du H, You J et al. Luteimonas huabeiensis sp. nov., isolated from stratum water. Int J Syst Evol Microbiol 2013; 63:3352–3357 [View Article] [PubMed]
    [Google Scholar]
  20. Siddiqi MZ, Yeon JM, Choi H, Lee JH, Kim SY et al. Luteimonas granuli sp. nov., isolated from granules of the wastewater treatment plant. Curr Microbiol 2020; 77:2002–2007 [View Article] [PubMed]
    [Google Scholar]
  21. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color-Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  22. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article] [PubMed]
    [Google Scholar]
  23. Gordon RE, Barnett DA, Handerhan JE, Pang CHN. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  24. Mu Y, Pan Y, Shi W, Liu L, Jiang Z et al. Luteimonas arsenica sp. nov., an arsenic-tolerant bacterium isolated from arsenic-contaminated soil. Int J Syst Evol Microbiol 2016; 66:2291–2296 [View Article] [PubMed]
    [Google Scholar]
  25. Verma A, Ojha AK, Kumari P, Sundharam SS, Mayilraj S et al. Luteimonas padinae sp. nov., an epiphytic bacterium isolated from an intertidal macroalga. Int J Syst Evol Microbiol 2016; 66:5444–5451 [View Article] [PubMed]
    [Google Scholar]
  26. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  27. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. In Colwell PR. eds Methods in Microbiology Orlando: Academic Press; 1987
    [Google Scholar]
  28. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  29. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatography 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  30. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note Newark: Microbial ID, Inc; 1990; 101
    [Google Scholar]
  31. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  32. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  33. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  34. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  35. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  36. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  37. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  38. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [View Article] [PubMed]
    [Google Scholar]
  39. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  40. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  41. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  43. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  44. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  45. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  46. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  47. Lucena T, Arahal DR, Sanz-Sáez I, Acinas SG, Sánchez O et al. Thalassocella blandensis gen. nov., sp. nov., a novel member of the family Cellvibrionaceae. Int J Syst Evol Microbiol 2020; 70:1231–1239 [View Article]
    [Google Scholar]
  48. Finkmann W, Altendorf K, Stackebrandt E, Lipski A. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2000; 50 Pt 1:273–282 [View Article] [PubMed]
    [Google Scholar]
  49. Lin P, Yan Z-F, Li C-T. Luteimonas cellulosilyticus sp. nov., cellulose-degrading bacterium isolated from soil in Changguangxi national Wetland Park, China. Curr Microbiol 2020; 77:1341–1347 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006088
Loading
/content/journal/ijsem/10.1099/ijsem.0.006088
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error